Steady State Radioisotopic Assessment of Brain Function

  • F. Fazio
  • C. Fieschi
  • G. L. Lenzi
Part of the Ettore Majorana International Science Series book series (EMISS, volume 7)


The classical radioisotopic technique for assessing cerebral perfusion is based on the single carotid injection of a diffusible gas such as 133Xe and external recording of the wash-out slopes over the brain; assuming the instantaneous distribution, following injection, of the tracer to the whole brain matter, flow can be calculated from wash-out rates (13). This is a dynamic approach, based on the external recording of time activity curves. However, blood flow (and eventually other functions) of an organ can also be investigated using steady state rather than dynamic approaches. All steady state methods for assessing flow are essentially based on the extraction principle of Sapirstein (19). This states that if a tracer is completely extracted from the circulation in its first pass through an organ the concentration in different parts of the organ is proportional to blood flow. The advantage of steady state over dynamic measurements would be the possibility of obtaining much higher counting statistics, which are required for the tomographic (and therefore tridimensional) assessment of the intracerebral distribution of radioactive isotopes.


Time Activity Curve Brain Blood Flow Single Photon Emission Computerise Tomography Positron Emission Radionuclide Computerise Axial Tomography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackerman, R.H., Bramanyan, R, Correia, J.A., Alpert, N.A., and Taveras, J.M., (1980), Stroke, 11, 45–49.CrossRefGoogle Scholar
  2. 2.
    Baron, J.C., Cornar, D., Soussaline, F., Todd-Pokropek, A., Bousser, M.G., Castaigne, P., and Kellershohn, C., (1979), Acta Neurol.Scand., 60, Suppl. 72, 194–195.Google Scholar
  3. 3.
    Collice, M., Fazio, C., Fieschi, C., and Arena, O., (1979), Acta Neurol.Scand., 60, Suppl. 72, 494–495.Google Scholar
  4. 4.
    Fazio, F., Nardini, M., Fieschi, C. and Forli, C., (1977), J. Nucl.Med., 18, 962–966.Google Scholar
  5. 5.
    Fazio, F., Fieschi, C., Nardini, M., Collice, M. and Possa, M., (1979), Acta Nerol.Scand., 60, Suppl. 72, 192–193.Google Scholar
  6. 6.
    Frackowiak, R.S.J., Lenzi, G.L., Jones, T., Heather, J., Buckingham, P.D., Forse, G.R. and Rhodes, C.G., (1980), Clin.Sci.Mol.Med., 58, 8P.Google Scholar
  7. 7.
    Frackowiak, R.S.J., Lenzi, G.L., Jones, T. and Heather J.D. In preparation.Google Scholar
  8. 8.
    Hoffman, E.J., Huang, S.-G. and Phelps, M.E., (1979), J. Comput.Assist.Tomogr., 3, 299–208.CrossRefGoogle Scholar
  9. 9.
    Huang, S.G., Hoffman, E.J., Phelps, M.E. and Kuhl, D.E., 1979, J. Comput.Assist.Tomogr., 3, 804–814.Google Scholar
  10. 10.
    Jones, T., Chesler, D. and Ter-Pogossian, M.M., (1976), Brit.J.Radiol., 49, 339–343.CrossRefGoogle Scholar
  11. 11.
    Jones, T., Forse, G.R., Heather, J.D. and Rhodes, C.G. In preparation.Google Scholar
  12. 12.
    Kuhl, D.E., Phelps, M.E., Hoffman, E.J., Robinson, G.D. Jr., and MacDonald, N.S., (1977), Acta Neurol.Scand., 56, Suppl. 64, 192–193.Google Scholar
  13. 13.
    Lassen, N.A. and Ingvar, D.H., (1963), Arch.Neurol. 9, 615.CrossRefGoogle Scholar
  14. 14.
    Lenzi, G.L., Jones, T., McKenzie, C.G. and Moss, S., 1978, J. Neurol.Nerosurg.Psychiat., 41, 11–17.CrossRefGoogle Scholar
  15. 15.
    Lenzi, G.L., Fieschi, C. and Fazio, F., in: “Investigation of Brain Function”, Erice, 1980.Google Scholar
  16. 16.
    Marcus, M.L., Heistad, D.D., Ehrhardt, J.C. and Abboud, F.M., (1976), J.Appl.Physiol., 40, 501–507.Google Scholar
  17. 17.
    Phelps, M.E., Hoffman, E.J., Mullani, N.A. and Ter-Pogossian, M.M., (1975) J.Nucl.Med., 15, 210–224.Google Scholar
  18. 18.
    Reivich, M., Kuhl, D., Wolf, A., Greenberg, J., Phelps, M., Ido, T., Casells, V., Fowler, J., Hoffman, E., Alavi, A., Som, P. and Sokoloff, L., (1979), Circ.Res., 44, 127–137.Google Scholar
  19. 19.
    Sapirstein, L.A., (1958), Am.J.Physiol., 193, 161–168.Google Scholar
  20. 20.
    Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S., Pettigrew, K.D., Sakurada, O. and Shinohara, M., (1977), J.Neurochem., 28, 897–916.CrossRefGoogle Scholar
  21. 21.
    Ter-Pogossian, M.M., Phelps, M.E., Hoffman, E.J. and Mullani, N.A., (1975), Radiology, 114, 89–98.Google Scholar
  22. 22.
    Ter-Pogossian, M.M., Mullani, N.A., Hood, J., Higgins C.S. and Currie, M., (1978), Radiology, 128, 477–484.Google Scholar
  23. 23.
    Uemura, K., Kanno, I., Miura, S., Tomingaga, S., Kawakahi, H., Abe, N. and Kutsuzawa, T., (1979), Acta Neurol.Scand., Vol. 60, Suppl. 72, 190–191.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • F. Fazio
    • 2
  • C. Fieschi
    • 2
  • G. L. Lenzi
    • 1
  1. 1.M.R.C. Cyclotron Unit and Department of MedicineLondonEngland
  2. 2.Department of NeurologyUniversity of RomeItaly

Personalised recommendations