Advertisement

Microtubules and Heart-Cell Contraction

  • Arthur P. Bollon
  • Rhonda R. Porterfield
  • John W. Fuseler
  • Jerry W. Shay

Abstract

The integration of specialized cell functions with cytoskeletal structure is a subject of active interest. Clearly, a correlation between the specialized function of muscle contractility and cytoskeletal elements such as microtubules, microfilaments, intermediate filaments, and the microtrabecular lattice should improve our understanding of heart-cell contraction, cell organization, and the relationship of both to cardiac disease.

Keywords

Cytoskeletal Element Parallel Array Microtubule Organization Dibutyryl cAMP Myocyte Contraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. G., Goldstein, J. L., and Brown, M. S., 1976, Localization of low density lysoprotein receptors on plasma membrane of normal human fibroblasts and their absence in cells from a familial hypercholesterolemia homozygote, Proc. Natl. Acad. Sci. U.S.A. 73:2434.Google Scholar
  2. Bollon, A. P., Nath, K., and Shay, J. W., 1977, Establishment of contracting heart muscle cell cultures, in: Tissue Culture Association Manual, Vol. 3 (V. Evans, V. Perry, and M. Vincent, eds.), pp. 637–640, Tissue Culture Association, Rockville, Maryland.Google Scholar
  3. Gershenbaum, M. R., Shay, J. W., and Porter, K. R., 1974, The effects of cytochalasin B on BALB-3T3 mammalian cells cultured in vitro as observed by scanning and high voltage electron microscopy, in: Proceedings of the 7th Annual Scanning Electron Microscope Symposium (O. Johari and I. Corwin, eds.), pp. 589–596, IIT Research Institute, Chicago, Illinois.Google Scholar
  4. Handel, M. A., and Roth, L. E., 1971, Cell shape and morphology of the neurol tube: Implications for microtubule function, Dev. Biol. 25;78.CrossRefGoogle Scholar
  5. Hsie, A. W., and Puck, T. T., 1971, Morphological transformation of Chinese hamster cells by dibutyryl adenosine cyclic 3′:5′-monophosphate and testosterone, Proc. Natl. Acad. Sci. U.S.A. 68;358.CrossRefGoogle Scholar
  6. Krause, E. G., Halle, W., and Wollenberger, A., 1972, Effect of dibutyryl cyclic GMP on cultured beating rat heart cells, Adv. Cyclic Nucleotide Res. 1;301.Google Scholar
  7. Nath, K., and Bollon, A. P., 1978, Effect of dibutyryl cyclic AMP and analogs on the rate of contractions of myocytes in culture, Experientia 34;1282.CrossRefGoogle Scholar
  8. Nath, K., Shay, J. W., and Bollon, A. P., 1978, Relationship between dibutyryl cyclic AMP and microtubule organization in contracting heart muscle cells, Proc. Natl. Acad. Sci. U.S.A. 75;319.CrossRefGoogle Scholar
  9. Porter, K. R., Puck, T. T., Hsie, A. W., and Kelley, D., 1974, An electron microscope study of the effects of dibutyryl cyclic AMP on Chinese hamster ovary cells, Cell 2;145.CrossRefGoogle Scholar
  10. Porterfield, R. R., Kagan, T. M., Bollon, A. P., and Shay, J. W., 1978, Scanning electron microscopic observations on normal and drug-treated primary heart cell cultures, Scanning Electron Microsc. II;465.Google Scholar
  11. Warren, R. H., 1974, Microtubular organization in elongating myogenic cells, J. Cell. Biol. 63;550.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Arthur P. Bollon
    • 1
  • Rhonda R. Porterfield
    • 2
  • John W. Fuseler
    • 2
  • Jerry W. Shay
    • 2
  1. 1.Department of Molecular GeneticsWadley Institutes of Molecular MedicineDallasUSA
  2. 2.Department of Cell BiologyThe University of Texas Health Science Center at DallasDallasUSA

Personalised recommendations