Interaction of Calcium-Calmodulin in Microtubule Assembly in Vitro

  • George Perry
  • B. R. Brinkley
  • Joseph Bryan


In most eukaryotic cells, microtubules, intermediate filaments, and microfilaments constitute a fibrous network that is termed the cytoskeleton. Microtubules have been implicated in a number of cell functions including cell motility, maintenance of cell shape, organelle movement and distribution, secretion, and cell-surface modulation.


Critical Concentration Free Calcium Homogenization Buffer Calcium Sensitivity Microtubule Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, B., Osborn, M., and Weber, K., 1978, Specific visualization of the distribution of the calcium dependent regulatory protein of cyclic nucleotide phosphodiesterase (modulator protein) in tissue culture cells by immunofluorescence microscopy: Mitosis and intracellular bridge, Cytobiologie 17;354.Google Scholar
  2. Baker, P. F., 1977, Calcium and the control of neurosecretion, Sci. Prog. (Oxford) 64;95.Google Scholar
  3. Borisy, G. G., Marcum, J. M., Olmsted, J. B., Murphy, D. B., and Johnson, K. A., 1975, Purification of tubulin and associated high molecular weight proteins from porcine brain and characterization of microtubule assembly in vitro, in: The Biology of Cytoplasmic Microtubules (D. Soifer, ed.), Ann. N. Y. Acad. Sci. 253;107.Google Scholar
  4. Brinkley, B. R., Marcum, J. M., Welsh, M. J., Dedman, J. R., and Means, A. R., 1978, Regulation of spindle microtubule assembly-disassembly: Localization and possible functional role of calcium dependent regulator protein, in: Cell Reproduction: In Honor of Daniel Mazia (E. R. Dirksen, D. M. Prescott, and C. F. Fox, eds.), pp. 299–314, Academic Press, New York.Google Scholar
  5. Bryan, J., and Nagle, B. W., 1976, Microtubules: Inhibition of spontaneous in vitro assembly by non-neural cell extracts, in: Molecular Basis of Motility (L. Heilmeyer, J. C. Rüegg, and Th. Wieland, eds.), pp. 161–174, Springer-Verlag, Berlin.Google Scholar
  6. Dedman, J. R., Potter, J. D., Jackson, R. L., Johnson, J. D., and Means, A. R., 1977, Physicochemi-cal properties of rat testes: Ca2+-dependent regulator protein of cyclic nucleotide phosphodiesterase, J. Biol. Chem. 252;8415.Google Scholar
  7. Dedman, J. R., Welsh, M. J., and Means, A. R., 1978, Ca2+-dependent regulator, J. Biol. Chem. 253;7515.Google Scholar
  8. Fuller, G. M., and Brinkley, B. R., 1975, Structure and control of assembly of cytoplasmic microtubules in normal and transformed cells, J. Supramol. Struct. 5;437.Google Scholar
  9. Gaskin, C. R. C., and Shelanski, M. L., 1975, Biochemical studies on the in vitro assembly and disassembly of microtubules, in: The Biology of Cytoplasmic Microtubules (D. Soifer, ed.), Ann. N.Y.Acad. Sci. 253;133.Google Scholar
  10. Glenney, J. R., and Weber, K., 1980, Calmodulin-binding proteins of the microfilaments present in isolated brush borders and microvilli of intestinal epithelial cells, J. Biol. Chem. 255;10551.Google Scholar
  11. Haga, T., Abe, T., and Kurokawa, M., 1974, Polymerization and depolymerization of microtubules in vitro as studied by flow birefringence, FEBS Lett. 39;291.CrossRefGoogle Scholar
  12. Hartree, E. F., 1972, Determination of protein: A modification of the Lowry method which gives a linear photometric response, Anal. Biochem. 48;422.CrossRefGoogle Scholar
  13. Jemiolo, D. K., Keller, T. C. S., Burgess, W. H., and Rebhun, L. I., 1979, Tubulin-CDR interactions in: The Cytoskeleton: Membranes and Movement (J. Cordeelis, P. Satir, and K. Burridge, eds.), p. 51, Cold Spring Harbor Laboratory, New York.Google Scholar
  14. Jemiolo, D. K., Burgess, W. H., Rebhun, L. I., and Kretsigner, R. H., 1980, Calmodulin interaction with cycle-purified brain tubulin components, J. Cell Biol. 87;248a.CrossRefGoogle Scholar
  15. Kiehart, D. P., and Inoué, S., 1977, Local depolymerization of spindle microtubules by microinjection of calcium ions, J. Cell Biol. 70;230a.Google Scholar
  16. Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature (London) 227;680.CrossRefGoogle Scholar
  17. La Porte, D. C., and Storm, D. R., 1978, Detection of calcium-dependent regulatory protein binding components using 125I-labeled calcium-dependent regulatory protein, J. Biol. Chem. 253;3374.Google Scholar
  18. La Porte, D. C., Wierman, B. M., and Storm, D. R., 1980, Calcium-induced exposure of a hydrophobic surface on calmodulin, Biochemistry 19;3814.CrossRefGoogle Scholar
  19. Lee, Y. C., Samson, F. E., Houston, L. L., and Himes, R. H., 1974, The in vitro polymerization of tubulin from beef brain, J. Neurobiol. 5;317.CrossRefGoogle Scholar
  20. Lin, C. T., Dedman, J. R., Welsh, M. J., Brinkley, B. R., and Means, A. R., 1979, Immunoelectron microscopic localization of calmodulin in the mitotic apparatus, J. Cell Biol. 83;378a.Google Scholar
  21. Marcum, J. M., Dedman, J. R., Brinkley, B. R., and Means, A. R., 1978, Control of microtubule assembly-disassembly by calcium-dependent regulator protein, Proc. Natl. Acad. Sci. U.S.A. 75;3771.CrossRefGoogle Scholar
  22. Nishida, E., 1978, Effects of solution variables on the calcium sensitivity of the microtubule assembly system, J. Biochem. (Toyko) 84;507.Google Scholar
  23. Nishida, E., and Sakai, H., 1977, Calcium-sensitivity of the microtubule reassembly system, J. Biochem. (Toyko) 82;303.Google Scholar
  24. Nishida, E., Kumagai, H., Ohtsuki, I., and Sakai, H., 1979, The interactions between calciumdependent regulator protein of cyclic nucleotide phosphodiesterase and microtubule proteins, J. Biochem. (Toyko) 85;1257.Google Scholar
  25. Olmsted, J. B., and Borisy, G. G., 1973, Characterization of microtubule assembly in porcine brain extracts by viscometry, Biochemistry 12;4282.CrossRefGoogle Scholar
  26. Olmsted, J. B., and Borisy, G. G., 1975, Ionic and nucleotide requirements for microtubule polymerization in vitro, Biochemistry 14;2996.CrossRefGoogle Scholar
  27. Potter, J. D., and Gergely, P., 1975, The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine, J. Biol. Chem. 250:4628.Google Scholar
  28. Rosenfeld, A. C., Zackroff, R. V., and Weisenberg, R. C., 1976, Magnesium stimulation of calcium binding to tubulin and calcium induced depolymerization of microtubules, FEBS Lett. 65;144.CrossRefGoogle Scholar
  29. Salmon, E. D., and Jenkins, R., 1977, Isolated mitotic spindles are depolymerized by μM calcium and show evidence of dynein, J. Cell Biol. 75;295a.Google Scholar
  30. Schliwa, M., 1976, The role of divalent cations in the regulation of microtubule assembly, J. Cell Biol. 70;527.CrossRefGoogle Scholar
  31. Weisenberg, R. C., 1972, Microtubule formation in vitro in solutions containing low calcium concentrations, Science 172;1104.CrossRefGoogle Scholar
  32. Weiss, B., and Levin, R. M., 1978, Mechanism for selectively inhibiting the activation of cyclic nucleotide phosphodiesterase and adenylate cyclase by antipsychotic agents, (W. J. George and L. J. Ignarro, eds.), Adv. Cyclic Nucleotide Res. 9;285.Google Scholar
  33. Welsh, M. J., Dedman, J. R., Brinkley, B. R., and Means, A. R., 1978, Calcium-dependent regulator protein: Localization in mitotic apparatus of eukaryotic cells, Proc. Natl. Acad. Sci. U.S.A. 75;1867.CrossRefGoogle Scholar
  34. Wood, J. G., Wallace, R. W., Whitaker, J. N., and Cheung, W. Y., 1980, Immunocytochemical localization of calmodulin and a heat-labile calmodulin-binding protein (CaM-BP80) in basal ganglia of mouse brain, J. Cell Biol. 84;66.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • George Perry
    • 1
  • B. R. Brinkley
    • 1
  • Joseph Bryan
    • 1
  1. 1.Department of Cell BiologyBaylor College of MedicineHoustonUSA

Personalised recommendations