Advertisement

Myosin Flexibility

  • Stephen C. Harvey
  • Herbert C. Cheung

Abstract

The description of the molecular events that produce tension in a contracting muscle is often called mechanochemistry, a term that well describes the synthesis of the two key elements in the contractile cycle. One of those elements is mechanical: we need to be able to describe in detail, with resolution down to the atomic level, the sequence of conformational changes that cause the thick and thin filaments to slide past one another. The other element is chemical: we need to determine the sequence of biochemical reactions in the contractile cycle and to measure the energetic and kinetic parameters of each of those reactions. Finally, the problem requires synthesis: we need to explain the coupling of the mechanical and chemical events. Only then will we understand how the chemical energy released by the hydrolysis of ATP is converted to the mechanical work performed by the contracting muscle.

Keywords

Intrinsic Viscosity Thin Filament Myosin Head Thick Filament Rotational Correlation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belford, G. G., Beiford, R. L., and Weber, G., 1972, Dynamics of fluorescence polarization in macromolecules, Proc. Natl. Acad. Sci. U.S.A. 69:1392.CrossRefGoogle Scholar
  2. Borejdo, J., Putnam, S., and Morales, M. F., 1979, Fluctuations in polarized fluorescence: Evidence that muscle cross bridges rotate repetitively during contraction, Proc. Natl. Acad. Sci. U.S.A. 76:6346.CrossRefGoogle Scholar
  3. Bressler, B. H., and Clinch, N. F., 1975, Cross bridges as the major source of compliance in contracting skeletal muscle, Nature (London) 256:221.CrossRefGoogle Scholar
  4. Broersma, S., 1960, Rotational diffusion of a cylindrical particle, J. Chem. Phys. 32:1626.CrossRefGoogle Scholar
  5. Bull, H. B., and Breese, K., 1973, Thermal transitions of proteins, Arch. Biochem. Biophys. 156:604.CrossRefGoogle Scholar
  6. Burke, M., Himmelfarb, S., and Harrington, W. F., 1973, Studies on the “hinge” region of myosin, Biochemistry 12:701.CrossRefGoogle Scholar
  7. Chiao, Y.-C. C., and Harrington, W. F., 1979, Cross-bridge movement in glycerinated rabbit psoas muscle fibers, Biochemistry 18:959.CrossRefGoogle Scholar
  8. Dalton, L. R., 1976, Saturation transfer spectroscopy, Adv. Magn. Reson. 8:149.Google Scholar
  9. Eisenberg, E., and Hill, T. L., 1978, A cross-bridge model of muscle contraction, Prog. Biophys. Mol. Biol. 33:55.CrossRefGoogle Scholar
  10. Eisenberg, E., Hill, T. L., and Chen, Y. D., 1980, Cross-bridge model of muscle contraction: Quantitative analysis, Biophys. J. 29:195.CrossRefGoogle Scholar
  11. Elliott, A., and Offer, G., 1978, Shape and flexibility of the myosin molecule, J. Mol. Biol. 123:505.CrossRefGoogle Scholar
  12. Flory, P. J., 1956, Role of crystallization in polymers and proteins, Science 124:53.CrossRefGoogle Scholar
  13. García Bernai, J. M., and García de la Torre, J., 1980, Transport properties and hydrodynamic centers of rigid macromolecules with arbitrary shapes, Biopolymers 19:751.CrossRefGoogle Scholar
  14. García de la Torre, J., and Bloomfield, V. A., 1978, Hydrodynamic properties of macromolecular complexes. IV. Intrinsic viscosity theory, with applications to once-broken rods and mul-tisubunit proteins, Biopolymers 17:1605.CrossRefGoogle Scholar
  15. García de la Torre, J., and Bloomfield, V. A., 1980, Conformation of myosin in dilute solution as estimated from hydrodynamic properties, Biochemistry 19:5118.CrossRefGoogle Scholar
  16. Goodno, C. C., and Swenson, C. A., 1975a, Thermal transitions of myosin and its helical fragments. I. Shifts in proton equilibria accompanying unfolding, Biochemistry 14:867.CrossRefGoogle Scholar
  17. Goodno, C. C., and Swenson, C. A., 1975b, Thermal transitions of myosin and its helical fragments. II. Solvent-induced variations in conformational stability, Biochemistry 14:873.CrossRefGoogle Scholar
  18. Goodno, C. C., Harris, T. A., and Swenson, C. A., 1976, Thermal transitions of myosin and its helical fragments: Regions of structural instability in the myosin molecule, Biochemistry 15:5157.CrossRefGoogle Scholar
  19. Harrington, W. F., 1971, A mechanochemical mechanism for muscle contraction, Proc. Natl. Acad. Sci. U.S.A. 68:685.CrossRefGoogle Scholar
  20. Harvey, S. C., and Cheung, H. C., 1972, Computer simulation of fluorescence depolarization due to Brownian motion, Proc. Natl. Acad. Sci. U.S.A. 69:3670.CrossRefGoogle Scholar
  21. Harvey, S. C., and Cheung, H. C., 1977, Fluorescence depolarization studies on the flexibility of the myosin rod, Biochemistry 16:5181.CrossRefGoogle Scholar
  22. Harvey, S. C., and Cheung, H. C., 1980, Transport properties of particles with segmental flexibility. II. Decay of fluorescence polarization anisotropy from hinged macromolecules, Biopolymers 19:913.CrossRefGoogle Scholar
  23. Harvey, S. C., Cheung, H. C., and Thames, K. E., 1977, Cooperativity in F-actin filaments on binding of myosin subfragments, demonstrated by fluorescence of l,N 6-ethenoadenosine diphosphate, Arch. Biochem. Biophys. 179:391.CrossRefGoogle Scholar
  24. Haselgrove, J. C., and Huxley, H. E., 1973, X-ray evidence for radial crossbridge movement and for the sliding filament model in actively contracting skeletal muscle, J. Mol. Biol. 77:549.CrossRefGoogle Scholar
  25. Haselgrove, J. C., Stewart, M., and Huxley, H. E., 1976, Cross-bridge movement during muscle contraction, Nature (London) 261:606.CrossRefGoogle Scholar
  26. Highsmith, S., 1978, The effects of divalent cations on the rotational mobility of myosin, heavy meromyosin and myosin subfragment-1 and on the binding of heavy meromyosin to actin, Biochim. Biophys. Acta 536:156.Google Scholar
  27. Highsmith, S., Kretzschmar, K. M., O’Konski, C. T., and Morales, M. F., 1977, Flexibility of myosin rod, light meromyosin, and myosin subfragment-2 in solution, Proc. Natl. Acad. Sci. U.S.A. 74:4986.CrossRefGoogle Scholar
  28. Highsmith, S., Akasaka, K., Konrad, M., Goody, R., Holmes, K., Wade-Jardetzky, N., and Jardetzky, O., 1979, Internal motions in myosin, Biochemistry 18:4238.CrossRefGoogle Scholar
  29. Huxley, A. F., and Simmons, R. M., 1971, Proposed mechanism of force generation in striated muscle, Nature (London) 233:533.CrossRefGoogle Scholar
  30. Huxley, H. E., 1957, The double array of filaments in cross-striated muscle, J. Biophys. Biochem. Cytol. 3:631.CrossRefGoogle Scholar
  31. Huxley, H. E., 1969, The mechanism of muscle contraction, Science 164:1356.CrossRefGoogle Scholar
  32. Huxley, H. E., 1971, The structural basis of muscular contraction, Proc. R. Soc. London Ser. B 160:442.CrossRefGoogle Scholar
  33. Huxley, H. E., and Brown, W., 1967, The low-angle X-ray diagram of vertebrate striated muscle and its behavior during contraction and rigor, J. Mol. Biol. 30:383.Google Scholar
  34. Hyde, J. S., 1978, Saturation transfer spectroscopy, Methods Enzymol. 49:480.CrossRefGoogle Scholar
  35. King, M. V., 1976, Electron-microscopic mapping of the hinge region of myosin, Experientia 32:975.CrossRefGoogle Scholar
  36. Kobayashi, S., and Totsuka, T., 1975, Electric birefringence of myosin subfragments, Biochim. Biophys. Acta 376:375.CrossRefGoogle Scholar
  37. Lowey, S., Slayter, H. S., Weeds, A. G., and Baker, H., 1969, Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation, J. Mol. Biol. 42:1.CrossRefGoogle Scholar
  38. Lymn, R. W., 1975, Equatorial X-ray reflections and cross arm movement in skeletal muscle, Nature (London) 258:770.CrossRefGoogle Scholar
  39. Mannherz, H. G., and Goody, R. S., 1976, Proteins of contractile systems, Annu. Rev. Biochem. 45:427.CrossRefGoogle Scholar
  40. Margossian, S. S., and Lowey, S., 1973, Substructure of the myosin molecule. IV. Interactions of myosin and its subfragments with adenosine triphosphate and F-actin, J. Mol. Biol. 74:313.CrossRefGoogle Scholar
  41. Marston, S. B., Treagear, R. T., Rodger, C. D., and Clarke, M. L., 1979, Coupling between the enzymatic site of myosin and the mechanical output of muscle, J. Mol. Biol. 128:111.CrossRefGoogle Scholar
  42. Mendelson, R. A., and Cheung, P., 1976, Muscle crossbridges: Absence of direct effect of calcium on movement away from the thick filaments, Science 194:190.CrossRefGoogle Scholar
  43. Mendelson, R. A., and Cheung, P. H.-C, 1978, Intrinsic segmental flexibility of the S-l moiety of myosin using single-headed myosin, Biochemistry 17:2139.CrossRefGoogle Scholar
  44. Mendelson, R. A., Mowery, P. C., Botts, J., and Cheung, H. C., 1972, The segmental flexibility of the S-l moiety of myosin, Biophys. J. 12:281a.Google Scholar
  45. Mendelson, R. A., Morales, M. F., and Botts, J., 1973, Segmental flexibility of the S-l moiety of myosin, Biochemistry 12:2250.CrossRefGoogle Scholar
  46. Morales, M. F., and Botts, J., 1979, On the molecular basis for chemomechanical energy transduction in muscle, Proc. Natl. Acad. Sci. U.S.A.76:3857.CrossRefGoogle Scholar
  47. Murphy, R. A., 1979, Filament organization and contractile function in vertebrate smooth muscle, Annu. Rev. Physiol. 41:737.CrossRefGoogle Scholar
  48. Nakajima, H., and Wada, Y., 1977, A general method for evaluation of diffusion constants, dilute-solution viscoelasticity, and the dielectric property of a rigid macromolecule with an arbitrary conformation. I, Biopolymers 16:875.CrossRefGoogle Scholar
  49. Peller, L., 1975, Segmental flexibility in the myosin molecule: Evidence from binding studies of myosin fragments with actin, J. Supramol. Struct. 3:169.CrossRefGoogle Scholar
  50. Perrin, F., 1934, Mouvement Brownien d’un ellipsoide. I. Dispersion diélectrique pour des molécules ellipsoidales,J. Phys. Radium VII 5:497.MATHCrossRefGoogle Scholar
  51. Perrin, F., 1936, Mouvement Brownien d’un ellipsoide. IL Rotation libre et dépolarisation des fluorescences: Translation et diffusion de molécules ellipsoidales, J. Phys. Radium VII 7:1.MATHCrossRefGoogle Scholar
  52. Rosser, R. W., Schrag, J. L., Ferry, J. D., and Greaser, M., 1977, Viscoelastic properties of very dilute paramyosin solutions, Macromolecules 10:978.CrossRefGoogle Scholar
  53. Rosser, R. W., Nestler, F. H. M., Schrag, J. L., Ferry, J. D., and Greaser, M., 1978, Infinite-dilution viscoelastic properties of myosin, Macromolecules 11:1239.CrossRefGoogle Scholar
  54. Samejima, K., Takahashi, K., and Yasui, T., 1976, Heat-induced denaturation of myosin total rod, Agric. Biol. Chem. 40:2455.CrossRefGoogle Scholar
  55. Schoenberg, M., 1980a, Geometrical factors influencing muscle force development. I. The effect of filament spacing upon axial forces, Biophys. J. 30:51.CrossRefGoogle Scholar
  56. Schoenberg, M., 1980b, Geometrical factors influencing muscle force development. II. Radial forces, Biophys. J. 30:69.CrossRefGoogle Scholar
  57. Squire, J. M., 1975, Muscle filament structure and muscle contraction, Annu. Rev. Biophys. Bioeng. 4:137.CrossRefGoogle Scholar
  58. Sutoh, K., and Harrington, W. F., 1977, Cross-linking of myosin thick filaments under activating and rigor conditions: A study of the radial disposition of the cross-bridges, Biochemistry 16:2441.CrossRefGoogle Scholar
  59. Sutoh, K., Sutoh, K., Karr, T., and Harrington, W. F., 1978a, Isolation and physico-chemical properties of a high molecular weight subfragment-2 of myosin, J. Mol. Biol. 126:1.CrossRefGoogle Scholar
  60. Sutoh, K., Chiao, Y.-C. C., and Harrington, W. F., 1978b, Effect of pH on the cross-bridge arrangement in synthetic myosin filaments, Biochemistry 17:1234.CrossRefGoogle Scholar
  61. Takahashi, K., 1978, Topography of the myosin molecule as visualized by an improved negative staining method, J. Biochem. 83:905.Google Scholar
  62. Taylor, E., 1979, Mechanism of actomyosin ATPase and the problem of muscle contraction, CRC Crit. Revs. Biochem. 6:103.CrossRefGoogle Scholar
  63. Thomas, D. D., 1978, Large scale rotational motions of proteins detected by electron paramagnetic resonance and fluorescence, Biophys. J. 24:439.CrossRefGoogle Scholar
  64. Thomas, D. D., Seidel, J. C., Gergely, J., and Hyde, J. S., 1975a, The quantitative measurement of rotational motion of the subfragment-1 region of myosin by saturation transfer EPR spectroscopy, J. Supramol. Struct. 3:376.CrossRefGoogle Scholar
  65. Thomas, D. D., Seidel, J. C., Hyde, J. S., and Gergely, J., 1975b, Motion of subfragment-1 in myosin and its supramolecular complexes: Saturation transfer electron paramagnetic resonance, Proc. Natl. Acad. Sci. U.S.A. 72:1729.CrossRefGoogle Scholar
  66. Thomas, D. D., Dalton, L. R., and Hyde, J. S., 1976, Rotational diffusion studied by passage saturation transfer electron paramagnetic resonance, J. Chem. Phys. 65:3006.CrossRefGoogle Scholar
  67. Tsong, T. Y., Karr, T., and Harrington, W. F., 1979, Rapid helix-coil transitions in the S-2 region of myosin, Proc. Natl. Acad. Sci. U.S.A. 76:1109.CrossRefGoogle Scholar
  68. Wahl, P., 1975, Decay of fluorescence anisotropy, in: Biochemical Fluorescence: Concepts (R. F. Chen and H. Edelhoch, eds.), pp. 1–41, Marcel Dekker, New York.Google Scholar
  69. Weber, A., and Murray, J. M., 1973, Molecular control mechanisms in muscle contraction, Physiol. Rev. 53:612.Google Scholar
  70. Yguerabide, J., 1972, Nanosecond fluorescence spectroscopy of macromolecules, Methods En-zymol. 26C:498.Google Scholar
  71. Yguerabide, J., Epstein, H. F., and Stryer, L., 1970, Segmental flexibility in an antibody molecule, J. Mol. Biol. 51:573.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Stephen C. Harvey
    • 1
  • Herbert C. Cheung
    • 1
  1. 1.Biophysics Section, Department of BiomathematicsUniversity of Alabama in BirminghamBirminghamUSA

Personalised recommendations