Skip to main content

Myosin Flexibility

  • Chapter
Cell and Muscle Motility

Abstract

The description of the molecular events that produce tension in a contracting muscle is often called mechanochemistry, a term that well describes the synthesis of the two key elements in the contractile cycle. One of those elements is mechanical: we need to be able to describe in detail, with resolution down to the atomic level, the sequence of conformational changes that cause the thick and thin filaments to slide past one another. The other element is chemical: we need to determine the sequence of biochemical reactions in the contractile cycle and to measure the energetic and kinetic parameters of each of those reactions. Finally, the problem requires synthesis: we need to explain the coupling of the mechanical and chemical events. Only then will we understand how the chemical energy released by the hydrolysis of ATP is converted to the mechanical work performed by the contracting muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belford, G. G., Beiford, R. L., and Weber, G., 1972, Dynamics of fluorescence polarization in macromolecules, Proc. Natl. Acad. Sci. U.S.A. 69:1392.

    Article  Google Scholar 

  • Borejdo, J., Putnam, S., and Morales, M. F., 1979, Fluctuations in polarized fluorescence: Evidence that muscle cross bridges rotate repetitively during contraction, Proc. Natl. Acad. Sci. U.S.A. 76:6346.

    Article  Google Scholar 

  • Bressler, B. H., and Clinch, N. F., 1975, Cross bridges as the major source of compliance in contracting skeletal muscle, Nature (London) 256:221.

    Article  Google Scholar 

  • Broersma, S., 1960, Rotational diffusion of a cylindrical particle, J. Chem. Phys. 32:1626.

    Article  Google Scholar 

  • Bull, H. B., and Breese, K., 1973, Thermal transitions of proteins, Arch. Biochem. Biophys. 156:604.

    Article  Google Scholar 

  • Burke, M., Himmelfarb, S., and Harrington, W. F., 1973, Studies on the “hinge” region of myosin, Biochemistry 12:701.

    Article  Google Scholar 

  • Chiao, Y.-C. C., and Harrington, W. F., 1979, Cross-bridge movement in glycerinated rabbit psoas muscle fibers, Biochemistry 18:959.

    Article  Google Scholar 

  • Dalton, L. R., 1976, Saturation transfer spectroscopy, Adv. Magn. Reson. 8:149.

    Google Scholar 

  • Eisenberg, E., and Hill, T. L., 1978, A cross-bridge model of muscle contraction, Prog. Biophys. Mol. Biol. 33:55.

    Article  Google Scholar 

  • Eisenberg, E., Hill, T. L., and Chen, Y. D., 1980, Cross-bridge model of muscle contraction: Quantitative analysis, Biophys. J. 29:195.

    Article  Google Scholar 

  • Elliott, A., and Offer, G., 1978, Shape and flexibility of the myosin molecule, J. Mol. Biol. 123:505.

    Article  Google Scholar 

  • Flory, P. J., 1956, Role of crystallization in polymers and proteins, Science 124:53.

    Article  Google Scholar 

  • García Bernai, J. M., and García de la Torre, J., 1980, Transport properties and hydrodynamic centers of rigid macromolecules with arbitrary shapes, Biopolymers 19:751.

    Article  Google Scholar 

  • García de la Torre, J., and Bloomfield, V. A., 1978, Hydrodynamic properties of macromolecular complexes. IV. Intrinsic viscosity theory, with applications to once-broken rods and mul-tisubunit proteins, Biopolymers 17:1605.

    Article  Google Scholar 

  • García de la Torre, J., and Bloomfield, V. A., 1980, Conformation of myosin in dilute solution as estimated from hydrodynamic properties, Biochemistry 19:5118.

    Article  Google Scholar 

  • Goodno, C. C., and Swenson, C. A., 1975a, Thermal transitions of myosin and its helical fragments. I. Shifts in proton equilibria accompanying unfolding, Biochemistry 14:867.

    Article  Google Scholar 

  • Goodno, C. C., and Swenson, C. A., 1975b, Thermal transitions of myosin and its helical fragments. II. Solvent-induced variations in conformational stability, Biochemistry 14:873.

    Article  Google Scholar 

  • Goodno, C. C., Harris, T. A., and Swenson, C. A., 1976, Thermal transitions of myosin and its helical fragments: Regions of structural instability in the myosin molecule, Biochemistry 15:5157.

    Article  Google Scholar 

  • Harrington, W. F., 1971, A mechanochemical mechanism for muscle contraction, Proc. Natl. Acad. Sci. U.S.A. 68:685.

    Article  Google Scholar 

  • Harvey, S. C., and Cheung, H. C., 1972, Computer simulation of fluorescence depolarization due to Brownian motion, Proc. Natl. Acad. Sci. U.S.A. 69:3670.

    Article  Google Scholar 

  • Harvey, S. C., and Cheung, H. C., 1977, Fluorescence depolarization studies on the flexibility of the myosin rod, Biochemistry 16:5181.

    Article  Google Scholar 

  • Harvey, S. C., and Cheung, H. C., 1980, Transport properties of particles with segmental flexibility. II. Decay of fluorescence polarization anisotropy from hinged macromolecules, Biopolymers 19:913.

    Article  Google Scholar 

  • Harvey, S. C., Cheung, H. C., and Thames, K. E., 1977, Cooperativity in F-actin filaments on binding of myosin subfragments, demonstrated by fluorescence of l,N 6-ethenoadenosine diphosphate, Arch. Biochem. Biophys. 179:391.

    Article  Google Scholar 

  • Haselgrove, J. C., and Huxley, H. E., 1973, X-ray evidence for radial crossbridge movement and for the sliding filament model in actively contracting skeletal muscle, J. Mol. Biol. 77:549.

    Article  Google Scholar 

  • Haselgrove, J. C., Stewart, M., and Huxley, H. E., 1976, Cross-bridge movement during muscle contraction, Nature (London) 261:606.

    Article  Google Scholar 

  • Highsmith, S., 1978, The effects of divalent cations on the rotational mobility of myosin, heavy meromyosin and myosin subfragment-1 and on the binding of heavy meromyosin to actin, Biochim. Biophys. Acta 536:156.

    Google Scholar 

  • Highsmith, S., Kretzschmar, K. M., O’Konski, C. T., and Morales, M. F., 1977, Flexibility of myosin rod, light meromyosin, and myosin subfragment-2 in solution, Proc. Natl. Acad. Sci. U.S.A. 74:4986.

    Article  Google Scholar 

  • Highsmith, S., Akasaka, K., Konrad, M., Goody, R., Holmes, K., Wade-Jardetzky, N., and Jardetzky, O., 1979, Internal motions in myosin, Biochemistry 18:4238.

    Article  Google Scholar 

  • Huxley, A. F., and Simmons, R. M., 1971, Proposed mechanism of force generation in striated muscle, Nature (London) 233:533.

    Article  Google Scholar 

  • Huxley, H. E., 1957, The double array of filaments in cross-striated muscle, J. Biophys. Biochem. Cytol. 3:631.

    Article  Google Scholar 

  • Huxley, H. E., 1969, The mechanism of muscle contraction, Science 164:1356.

    Article  Google Scholar 

  • Huxley, H. E., 1971, The structural basis of muscular contraction, Proc. R. Soc. London Ser. B 160:442.

    Article  Google Scholar 

  • Huxley, H. E., and Brown, W., 1967, The low-angle X-ray diagram of vertebrate striated muscle and its behavior during contraction and rigor, J. Mol. Biol. 30:383.

    Google Scholar 

  • Hyde, J. S., 1978, Saturation transfer spectroscopy, Methods Enzymol. 49:480.

    Article  Google Scholar 

  • King, M. V., 1976, Electron-microscopic mapping of the hinge region of myosin, Experientia 32:975.

    Article  Google Scholar 

  • Kobayashi, S., and Totsuka, T., 1975, Electric birefringence of myosin subfragments, Biochim. Biophys. Acta 376:375.

    Article  Google Scholar 

  • Lowey, S., Slayter, H. S., Weeds, A. G., and Baker, H., 1969, Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation, J. Mol. Biol. 42:1.

    Article  Google Scholar 

  • Lymn, R. W., 1975, Equatorial X-ray reflections and cross arm movement in skeletal muscle, Nature (London) 258:770.

    Article  Google Scholar 

  • Mannherz, H. G., and Goody, R. S., 1976, Proteins of contractile systems, Annu. Rev. Biochem. 45:427.

    Article  Google Scholar 

  • Margossian, S. S., and Lowey, S., 1973, Substructure of the myosin molecule. IV. Interactions of myosin and its subfragments with adenosine triphosphate and F-actin, J. Mol. Biol. 74:313.

    Article  Google Scholar 

  • Marston, S. B., Treagear, R. T., Rodger, C. D., and Clarke, M. L., 1979, Coupling between the enzymatic site of myosin and the mechanical output of muscle, J. Mol. Biol. 128:111.

    Article  Google Scholar 

  • Mendelson, R. A., and Cheung, P., 1976, Muscle crossbridges: Absence of direct effect of calcium on movement away from the thick filaments, Science 194:190.

    Article  Google Scholar 

  • Mendelson, R. A., and Cheung, P. H.-C, 1978, Intrinsic segmental flexibility of the S-l moiety of myosin using single-headed myosin, Biochemistry 17:2139.

    Article  Google Scholar 

  • Mendelson, R. A., Mowery, P. C., Botts, J., and Cheung, H. C., 1972, The segmental flexibility of the S-l moiety of myosin, Biophys. J. 12:281a.

    Google Scholar 

  • Mendelson, R. A., Morales, M. F., and Botts, J., 1973, Segmental flexibility of the S-l moiety of myosin, Biochemistry 12:2250.

    Article  Google Scholar 

  • Morales, M. F., and Botts, J., 1979, On the molecular basis for chemomechanical energy transduction in muscle, Proc. Natl. Acad. Sci. U.S.A.76:3857.

    Article  Google Scholar 

  • Murphy, R. A., 1979, Filament organization and contractile function in vertebrate smooth muscle, Annu. Rev. Physiol. 41:737.

    Article  Google Scholar 

  • Nakajima, H., and Wada, Y., 1977, A general method for evaluation of diffusion constants, dilute-solution viscoelasticity, and the dielectric property of a rigid macromolecule with an arbitrary conformation. I, Biopolymers 16:875.

    Article  Google Scholar 

  • Peller, L., 1975, Segmental flexibility in the myosin molecule: Evidence from binding studies of myosin fragments with actin, J. Supramol. Struct. 3:169.

    Article  Google Scholar 

  • Perrin, F., 1934, Mouvement Brownien d’un ellipsoide. I. Dispersion diélectrique pour des molécules ellipsoidales,J. Phys. Radium VII 5:497.

    Article  MATH  Google Scholar 

  • Perrin, F., 1936, Mouvement Brownien d’un ellipsoide. IL Rotation libre et dépolarisation des fluorescences: Translation et diffusion de molécules ellipsoidales, J. Phys. Radium VII 7:1.

    Article  MATH  Google Scholar 

  • Rosser, R. W., Schrag, J. L., Ferry, J. D., and Greaser, M., 1977, Viscoelastic properties of very dilute paramyosin solutions, Macromolecules 10:978.

    Article  Google Scholar 

  • Rosser, R. W., Nestler, F. H. M., Schrag, J. L., Ferry, J. D., and Greaser, M., 1978, Infinite-dilution viscoelastic properties of myosin, Macromolecules 11:1239.

    Article  Google Scholar 

  • Samejima, K., Takahashi, K., and Yasui, T., 1976, Heat-induced denaturation of myosin total rod, Agric. Biol. Chem. 40:2455.

    Article  Google Scholar 

  • Schoenberg, M., 1980a, Geometrical factors influencing muscle force development. I. The effect of filament spacing upon axial forces, Biophys. J. 30:51.

    Article  Google Scholar 

  • Schoenberg, M., 1980b, Geometrical factors influencing muscle force development. II. Radial forces, Biophys. J. 30:69.

    Article  Google Scholar 

  • Squire, J. M., 1975, Muscle filament structure and muscle contraction, Annu. Rev. Biophys. Bioeng. 4:137.

    Article  Google Scholar 

  • Sutoh, K., and Harrington, W. F., 1977, Cross-linking of myosin thick filaments under activating and rigor conditions: A study of the radial disposition of the cross-bridges, Biochemistry 16:2441.

    Article  Google Scholar 

  • Sutoh, K., Sutoh, K., Karr, T., and Harrington, W. F., 1978a, Isolation and physico-chemical properties of a high molecular weight subfragment-2 of myosin, J. Mol. Biol. 126:1.

    Article  Google Scholar 

  • Sutoh, K., Chiao, Y.-C. C., and Harrington, W. F., 1978b, Effect of pH on the cross-bridge arrangement in synthetic myosin filaments, Biochemistry 17:1234.

    Article  Google Scholar 

  • Takahashi, K., 1978, Topography of the myosin molecule as visualized by an improved negative staining method, J. Biochem. 83:905.

    Google Scholar 

  • Taylor, E., 1979, Mechanism of actomyosin ATPase and the problem of muscle contraction, CRC Crit. Revs. Biochem. 6:103.

    Article  Google Scholar 

  • Thomas, D. D., 1978, Large scale rotational motions of proteins detected by electron paramagnetic resonance and fluorescence, Biophys. J. 24:439.

    Article  Google Scholar 

  • Thomas, D. D., Seidel, J. C., Gergely, J., and Hyde, J. S., 1975a, The quantitative measurement of rotational motion of the subfragment-1 region of myosin by saturation transfer EPR spectroscopy, J. Supramol. Struct. 3:376.

    Article  Google Scholar 

  • Thomas, D. D., Seidel, J. C., Hyde, J. S., and Gergely, J., 1975b, Motion of subfragment-1 in myosin and its supramolecular complexes: Saturation transfer electron paramagnetic resonance, Proc. Natl. Acad. Sci. U.S.A. 72:1729.

    Article  Google Scholar 

  • Thomas, D. D., Dalton, L. R., and Hyde, J. S., 1976, Rotational diffusion studied by passage saturation transfer electron paramagnetic resonance, J. Chem. Phys. 65:3006.

    Article  Google Scholar 

  • Tsong, T. Y., Karr, T., and Harrington, W. F., 1979, Rapid helix-coil transitions in the S-2 region of myosin, Proc. Natl. Acad. Sci. U.S.A. 76:1109.

    Article  Google Scholar 

  • Wahl, P., 1975, Decay of fluorescence anisotropy, in: Biochemical Fluorescence: Concepts (R. F. Chen and H. Edelhoch, eds.), pp. 1–41, Marcel Dekker, New York.

    Google Scholar 

  • Weber, A., and Murray, J. M., 1973, Molecular control mechanisms in muscle contraction, Physiol. Rev. 53:612.

    Google Scholar 

  • Yguerabide, J., 1972, Nanosecond fluorescence spectroscopy of macromolecules, Methods En-zymol. 26C:498.

    Google Scholar 

  • Yguerabide, J., Epstein, H. F., and Stryer, L., 1970, Segmental flexibility in an antibody molecule, J. Mol. Biol. 51:573.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Harvey, S.C., Cheung, H.C. (1982). Myosin Flexibility. In: Dowben, R.M., Shay, J.W. (eds) Cell and Muscle Motility. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4037-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4037-9_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4039-3

  • Online ISBN: 978-1-4684-4037-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics