Advertisement

The Mechanism of Actin-Filament Assembly and Cross-Linking

  • Thomas D. Pollard
  • Ueli Aebi
  • John A. Cooper
  • Marshall Elzinga
  • Walter E. Fowler
  • Linda M. Griffith
  • Ira M. Herman
  • John Heuser
  • Gerhard Isenberg
  • Daniel P. Kiehart
  • Janelle Levy
  • Susan MacLean-Fletcher
  • Pamela Maupin
  • Mark S. Mooseker
  • Marschall Runge
  • P. Ross Smith
  • Peter Tseng

Abstract

Actin is one of the major proteins in eukaryotic cells, and actin filaments are the major structural element of both the contractile apparatus and the “cyto-skeleton” of most cells. In their role as a contractile protein, filaments of actin are thought to interact with myosin to generate the force for cellular motility, much like they do in muscle contraction. The role of actin as a structural protein is less well defined, but probably no less important. The general idea is that the cytoplasm contains a three-dimensional network of actin filaments that can be cross-linked to form a gel. This network forms an internal scaffolding that traps the organelles (see Mast, 1926), distributes local contractile forces throughout the cytoplasm to the cell surface, and may also provide a scaffolding for certain enzyme systems (Clark and Masters, 1975).

Keywords

Actin Filament Actin Polymerization Gelation Protein Actin Monomer Acanthamoeba Castellanii 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebi, U., Isenberg, G., Pollard, T. D., and Smith, P. R., 1980, Structure of crystalline actin sheets, Nature (London) 288:296.CrossRefGoogle Scholar
  2. Allen, R. D., Francis, D. W., and Nakajima, H., 1965, Cyclic birefringence changes in pseudopods of Chaos carolinensis revealing the localization of the motive force in pseudopod extension, Proc. Natl. Acad. Sci U.S.A. 54;1153.CrossRefGoogle Scholar
  3. Bergen, L. G., and Borisy, G. G., 1980, Head-to-tail polymerization of microtubules in vitro: Electron microscope analysis of seeded assembly, J. Cell Biol. 84:141.CrossRefGoogle Scholar
  4. Brenner, S. L., and Korn, E. D., 1979, Substoichiometric concentrations of cytochalasin D inhibit actin polymerization, J. Biol. Chem. 254;9982.Google Scholar
  5. Brenner, S. L., and Korn, E. D., 1980, The effects of cytochalasins on actin polymerization and actin ATPase provide insights into the mechanism of polymerization, J. Biol. Chem. 255;841.Google Scholar
  6. Brotschi, E. A., Hartwig, J. H., and Stossel, T. P., 1978, Gelation of actin by actin-binding protein, J. Biol. Chem. 253;8988.Google Scholar
  7. Brown, S. S., and Spudich, J. A., 1979, Cytochalasin inhibits the rate of elongation of actin filament fragments, J. Cell Biol. 83;657.CrossRefGoogle Scholar
  8. Bryan, J., and Kane, R. E., 1978, Separation and interaction of major components of sea-urchin actin gel, J. Mol. Biol 125;207.CrossRefGoogle Scholar
  9. Carlsson, L., Nystrom, L. E., Sundkvisk, I., Markey, F., and Lindberg, U., 1977, Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells, J. Mol. Biol. 115;465.CrossRefGoogle Scholar
  10. Carter, S. B., 1967, Effects of cytochalasins on mammalian cells, Nature (London) 213;261.CrossRefGoogle Scholar
  11. Clark, F. M., and Masters, C. J., 1975, On the association of glycolytic enzymes with structural proteins of skeletal muscle, Biochim. Biophys. Acta 381;37.CrossRefGoogle Scholar
  12. Collins, J. H., and Elzinga, M., 1975, The primary structure of actin from rabbit skeletal muscle: Completion and analysis of the amino acid sequence, J. Biol. Chem. 250;5915.Google Scholar
  13. Condeelis, J. S., and Taylor, D. L., 1977, Contractile basis of ameboid movement. 5. Control of gelation, solation, and contraction in extracts from Dictyosteliumdiscoideum, J. Cell Biol. 74;901.CrossRefGoogle Scholar
  14. DosRemedios, C. G., and Dickens, M. J., 1978, Actin microcrystals and tubes formed in presence of gadolinium ions, Nature (London) 276;731.CrossRefGoogle Scholar
  15. Dujardin, F., 1835, Recherches sur les organismes inférieurs, Ann. Sci. Nat. Zool. 4;343.Google Scholar
  16. Flory, P. J., 1953, Principles of Polymer Chemistry, Cornell University Press, New York.Google Scholar
  17. Gordon, D. S., Boyer, J. L., and Korn, E. D., 1977, Comparative biochemistry of non-muscle actins, J. Biol. Chem. 252;8300.Google Scholar
  18. Griffith, L. M., and Pollard, T. D., 1978, Evidence for actin filament-microtubule interaction mediated by microtubule-associated proteins, Cell Biol. 78;958.CrossRefGoogle Scholar
  19. Griffith, L. M., and Pollard, T. D., 1982a, Crosslinking of actin filament networks by self-association and actin binding macromolecules, J. Biol. Chem. (submitted).Google Scholar
  20. Griffith, L. M., and Pollard, T. D., 1982b, The interaction of actin filaments with microtubules and microtubule associated proteins, J. Biol. Chem. (submitted).Google Scholar
  21. Grumet, M., and Lin, S., 1980a, Reversal of profilin inhibition of actin polymerization in vitro by erythrocyte cytochalasin-binding complexes and cross-linked actin nuclei, Biochem. Biophys. Res. Commun. 92;1324.CrossRefGoogle Scholar
  22. Grumet, M., and Lin, S., 1980b, A platelet inhibitor protein with cytochalasin-like activity against actin polymerization in vitro, Cell 21;439.Google Scholar
  23. Hartwig, J. H., and Stossel, T. P., 1979, Cytochalasin B and the structure of actin gels, J. Mol. Biol. 134;539.CrossRefGoogle Scholar
  24. Herman, I. M., and Pollard, T. D., 1979, Comparison of purified anti-actin and fluorescent-heavy meromyosin staining patterns in dividing cells, J. Cell Biol. 80;509.CrossRefGoogle Scholar
  25. Herman, I., Crisona, N., and Pollard, T. D., 1981, Relation between cell activity and the distribution of cytoplasmic actin and myosin, J. Cell Biol. 90;84.CrossRefGoogle Scholar
  26. Heuser, J. E., and Kirschner, M. W., 1980, Filament organization revealed in platinum replicas of freeze-dried cytoskeletons, J. Cell Biol. 86:212.CrossRefGoogle Scholar
  27. Huxley, H. E., 1963, Electron microscopic studies on the structure of natural and synthetic protein filaments from striated muscle, J. Mol. Biol. 7:281.CrossRefGoogle Scholar
  28. Isenberg, G., Aebi, U., and Pollard, T. D., 1980, A novel actin binding protein from Acanthamoeba which regulates actin filament polymerization and interactions, Nature (London) 288;455.CrossRefGoogle Scholar
  29. Ishikawa, H., Bischoff, R., and Holtzer, H., 1969, Formation of arrowhead complexes with heavy meromyosin in a variety of cell types, J. Cell Biol. 43;312.CrossRefGoogle Scholar
  30. Lazarides, E., and Weber, K., 1974, Actin antibody: The specific visualization of actin filaments in non-muscle cells, Proc. Natl. Acad. Sci. U.S.A. 71;2268.CrossRefGoogle Scholar
  31. Lin, D. C. and Lin, S., 1979, Actin polymerization induced by a motility-related high affinity cytochalasin binding complex from human erythrocyte membrane, Proc. Natl. Acad. Sci. U.S.A. 76;2345.CrossRefGoogle Scholar
  32. Lin, D. C., Tobin, K. D., Grumet, M., and Lin, S., 1980, Cytochalasins inhibit nuclei-induced actin polymerization by blocking filament elongation, J. Cell Biol. 84:455.CrossRefGoogle Scholar
  33. Lu, R., and Elzinga, M., 1976, Comparison of amino acid sequences of actins from bovine brain and muscles, in: Cell Motility (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 487–492, Cold Spring Harbor Laboratory, New York.Google Scholar
  34. MacLean-Fletcher, S., and Pollard, T. D., 1980a, Viscometric analysis of the gelation of Acanthamoeba extracts and purification of two gelation factors, J. Cell Biol. 85;414.CrossRefGoogle Scholar
  35. MacLean-Fletcher, S., and Pollard, T. D., 1980b, Mechanism of action of cytochalasin B on actin, Cell 20;329.CrossRefGoogle Scholar
  36. MacLean-Fletcher, S., and Pollard, T. D., 1980c, Identification of a factor in conventional muscle actin preparation which inhibits actin filament self-association, Biochem. Biophys. Res. Commun. 96;18.CrossRefGoogle Scholar
  37. Maruta, H., and Korn, E. D., 1977, Purification of Acanthamoeba castellanii of proteins that induce gelation and syneresis of F-actin, J. Biol. Chem. 252;399.Google Scholar
  38. Maruyama, K., Kaibara, M., and Fukada, E., 1974, Rheology of F-actin. I. Network of F-actin in solution, Biochim. Biophys. Acta 271;20.Google Scholar
  39. Mast, S. O., 1926, Structure, movement, locomotion and stimulation of amoeba, J. Morphol. Physiol. 41;347.CrossRefGoogle Scholar
  40. Mimura, N., and Asano, A., 1980, Ca2+-sensitive gelation of actin-filaments by a new protein factor, Nature (London) 282;44.CrossRefGoogle Scholar
  41. Moore, P. B., Huxley, H. E., and DeRosier, D. J., 1970, Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments, J. Mol. Biol. 50;279.CrossRefGoogle Scholar
  42. Oosawa, F., and Asakura, S., 1975, Thermodynamics of the Polymerization of Protein, Academic Press, New York.Google Scholar
  43. Pollard, T. D., 1976, The role of actin in the temperature dependent gelation and contraction of extracts of Acanthamoeba, J. Cell Biol. 68;579.CrossRefGoogle Scholar
  44. Pollard, T. D., 1981, Purification of a calcium-sensitive actin gelation protein from Acanthamoeba, J. Biol. Chem. 256;7666.Google Scholar
  45. Pollard, T. D., and Ito, S., 1970, Cytoplasmic filaments of Amoeba proteus. I. The role of filaments in consistency changes and movement, J. Cell Biol. 46;267.CrossRefGoogle Scholar
  46. Pollard, T. D., and Mooseker, M. S., 1981, Direct measurement of actin polymerization rate constants by electron microscopy of actin filaments nucleated by isolated microvillus cores, J. Cell Biol. 88;654.CrossRefGoogle Scholar
  47. Pollard, T. D., Shelton, E., Weihing, R. R., and Korn, E. D., 1970, Ultrastructural characterization of F-actin isolated from Acanthamoeba castellanii and identification of cytoplasmic filaments as F-actin by reaction with rabbit muscle heavy meromyosin, J. Mol. Biol. 50;91.CrossRefGoogle Scholar
  48. Reichstein, E., and Korn, E. D., 1979, Acanthamoeba profilin—protein of low-molecular weight from Acanthamoeba castellanii that inhibits actin nucleation, J. Biol. Chem. 254;6174.Google Scholar
  49. Simpson, P. A., and Spudich, J. A., 1980, ATP-driven steady-state exchange of monomeric and filamentous actin from Dictyostelium discoideum, Proc. Natl. Acad. Sci. U.S.A. 77;4610.CrossRefGoogle Scholar
  50. Taylor, D. L., and Condeelis, J. S., 1979, Cytoplasmic structure and contractility in ameboid cells, Int. Rev. Cytol. 56;57.CrossRefGoogle Scholar
  51. Vanderkerckhove, J., and Weber, K., 1978, Amino-acid sequence of Physarum actin, Nature (London) 276;720.CrossRefGoogle Scholar
  52. Wang, K., and Singer, S. J., 1977, Interaction of filamin with F-actin in solution, Proc. Natl. Acad. Sci. U.S.A. 74;2021.CrossRefGoogle Scholar
  53. Wegner, A., 1976, Head to tail polymerization of actin, J. Mol. Biol. 109;139.CrossRefGoogle Scholar
  54. Woodrum, D. T., Rich, S. A., and Pollard, T. D., 1975, Evidence for the biased bidirectional polymerization of actin using heavy meromyosin produced by an improved method, J. Cell Biol. 67;231.CrossRefGoogle Scholar
  55. Yin, H. L., and Stossel, T. P., 1979, Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein, Nature (London) 281;583.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Thomas D. Pollard
    • 1
  • Ueli Aebi
    • 1
  • John A. Cooper
    • 1
  • Marshall Elzinga
    • 2
  • Walter E. Fowler
    • 1
  • Linda M. Griffith
    • 1
  • Ira M. Herman
    • 1
  • John Heuser
    • 3
  • Gerhard Isenberg
    • 1
  • Daniel P. Kiehart
    • 1
  • Janelle Levy
    • 1
  • Susan MacLean-Fletcher
    • 1
  • Pamela Maupin
    • 1
  • Mark S. Mooseker
    • 4
  • Marschall Runge
    • 1
  • P. Ross Smith
    • 5
  • Peter Tseng
    • 1
  1. 1.Department of Cell Biology and AnatomyThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Biology DivisionBrookhaven National LaboratoriesUptonUSA
  3. 3.Department of Physiology and BiophysicsWashington University School of MedicineSt. LouisUSA
  4. 4.Department of BiologyYale UniversityNew HavenUSA
  5. 5.Department of Cell BiologyNew York University School of MedicineNew YorkUSA

Personalised recommendations