Fluorescent-Probe Studies of Contractile Proteins

  • Robert A. Mendelson


The present knowledge of the mechanism of muscle contraction and cell movement at the molecular level comes from an accumulation of experimental evidence obtained using a wide variety of biochemical and biophysical techniques. In relatively recent times, the use of intrinsic and extrinsic fluorescence probes has provided useful information about the kinetic intermediates, mobility, binding, orientation, intramolecular distances, and site environment of the globular head region of the myosin molecule, both free in solution and as a part of the intact muscle “cross-bridges” that are thought to be the impellers of biological movement.


Fluorescence Polarization Contractile Protein Sarcomere Length Myosin Head Thick Filament 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aranson, J., and Morales, M. F., 1969, Polarization of tryptophan fluorescence in muscle, Biochemistry 8:4512.Google Scholar
  2. Belford, G. G., Belford, R. L., and Weber, G., 1972, Dynamics of fluorescence polarization in macromolecules, Proc. Natl. Acad. Sci. U.S.A. 69:1392.CrossRefGoogle Scholar
  3. Borejdo, J., and Putnam, S., 1977, Polarization of fluorescence from single skinned glycerinated rabbit psoas fibers in rigor and relaxation, Biochim. Biophys. Acta 459:578.CrossRefGoogle Scholar
  4. Borejdo, J., Putnam, S., and Morales, M. F., 1979, Fluctuations in polarized fluorescence: Evidence that muscle cross bridges rotate repetitively during contraction, Proc. Natl. Acad. Sci. U.S.A. 76:6346.CrossRefGoogle Scholar
  5. Cooke, R., 1981, Fluorescence as a probe of contractile systems, Methods Enzymol. (in press).Google Scholar
  6. Dos Remedios, C. G., Millikan, R. G. C., and Morales, M. F., 1972, Polarization of tryptophane fluorescence from single striated muscle fibers, J. Gen. Physiol. 59:103.CrossRefGoogle Scholar
  7. Duke, J., Takashi, R., Ue, K., and Morales, M. F., 1976, Reciprocal reactivities of specific thiols when actin binds to myosin, Proc. Natl. Acad. Sci. U.S.A. 73:302.CrossRefGoogle Scholar
  8. Ehrenberg, M., and Rigler, R., 1972, Polarized fluorescence and rotational Brownian motion, Chem. Phys. Lett. 14:539.CrossRefGoogle Scholar
  9. Elliott, A., and Offer, G., 1978, Shape and flexibility of the myosin molecule, J. Mol. Biol. 123:505.CrossRefGoogle Scholar
  10. Gratzer, W. B., and Lowey, S., 1969, Effect of substrate on conformation of myosin, J. Biol. Chem. 244:22.Google Scholar
  11. Harvey, S. C., and Cheung, H. C., 1980, Transport properties of particles with segmental flexibility. II. Decay of fluorescence polarization anisotropy from hinged macromolecules, Biopoly-mers 19:913.CrossRefGoogle Scholar
  12. Haselgrove, J. C., 1975, X-ray evidence for conformational changes in the myosin filaments of vertebrate striated muscles, J. Mol. Biol. 92:113.CrossRefGoogle Scholar
  13. Highsmith, S., Mendelson, R. A., and Morales, M. F., 1976, Affinity of myosin S-l for F-actin, measured by time-resolved fluorescence anisotropy, Proc. Natl. Acad. Sci. U.S.A. 73:133.CrossRefGoogle Scholar
  14. Holmes, K. C., Tregear, R. T., and Barrington Leigh, J., 1980, Interpretation of low angle x-ray diffraction from insect flight muscle in rigor, Proc. R. Soc. London Ser. B 207:13.CrossRefGoogle Scholar
  15. Hudson, E., and Weber, G., 1973, The synthesis and characterization of two fluorescent sulfhy-dryl reagents, Biochemistry 12:4154.CrossRefGoogle Scholar
  16. Huxley, A. F., and Niedergerke, H., 1954, Structural changes in muscle during contraction: Interference microscopy of living muscle fibers, Nature (London) 173:971.CrossRefGoogle Scholar
  17. Huxley, A. F., and Simmons, R. M., 1971, Proposed mechanism of force generation in striated muscle, Nature (London) 233:533.CrossRefGoogle Scholar
  18. Huxley, H. E., 1957, The double array of filaments in cross-striated muscle, J. Biophys. Biochem. Cytol. 3:631.CrossRefGoogle Scholar
  19. Huxley, H. E., 1960, Muscle cells, in: The Cell, Vol. 4 (J. Brachet and A. Mirsky, eds.), pp. 365–911, Academic Press, New York.Google Scholar
  20. Huxley, H. E., 1969, The mechanism of muscular contraction, Science 164:1356.CrossRefGoogle Scholar
  21. Huxley, H. E., and Brown, W., 1967, The low-angle x-ray diagram of vertebrate striated muscle and its behavior during contraction and rigor, J. Mol. Biol. 30:383.Google Scholar
  22. Huxley, H. E., and Hanson, J., 1954, Changes in cross-striations of muscle during contraction and stretch and their structural interpretation, Nature (London) 173:973.CrossRefGoogle Scholar
  23. Huxley, H. E., Faruqi, A. R., Bordas, J., Koch, M. H. J., and Milch, J. R., 1980, The use of synchrotron radiation in time-resolved X-ray studies of myosin layer-line reflections during muscle contraction, Nature (London) 284:140.CrossRefGoogle Scholar
  24. Inoué, H., Takenaka, T., and Tonomura, Y., 1979, Functional implications of the two-headed structure of myosin, Adv. Biophys. 13:1.Google Scholar
  25. Kaminer, B., and Bell, A. L., 1966, Myosin filamentogenesis—Effects of pH and ionic concentration, J. Mol. Biol. 20:391.CrossRefGoogle Scholar
  26. Kauzmann, W., 1957, Quantum Chemistry, Chapter 15, Academic Press, New York.MATHGoogle Scholar
  27. Kinesota, K., Jr., Kawato, S., and Ikegami, S., 1977, A theory of fluorescence polarization decay in membranes, Biophys. J. 20:289.CrossRefGoogle Scholar
  28. Lowey, S., and Slayter, H. S., Weeds, A. G., and Baker, H., 1969, Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation, J. Mol. Biol. 42:1.CrossRefGoogle Scholar
  29. Mendelson, R. A., and Cheung, P., 1976, Muscle crossbridges: Absence of direct effect of calcium on movement away from the thick filaments, Science 194:190.CrossRefGoogle Scholar
  30. Mendelson, R. A., and Cheung, P., 1978, Intrinsic segmental flexibility of the S-l moiety of myosin using single-headed myosin, Biochemistry 17:2139.CrossRefGoogle Scholar
  31. Mendelson, R. A., and Kretzschmar, K. M., 1980, Structure of subfragment 1 from low-angle x-ray scattering, Biochemistry 19:4103.CrossRefGoogle Scholar
  32. Mendelson, R. A., and Morales, M. F., 1977, The theory of fluorescence polarization from fluorescent labelled muscle fibers, Biochim. Biophys. Acta 459:590.Google Scholar
  33. Mendelson, R. A., and Wilson, M., 1981, Three dimensional disorder in helical systems: Application to dipolar ESR and fluorescent probes on muscle cross-bridges, Biophys. J. Abstr. 33:82.Google Scholar
  34. Mendelson, R. A., Morales, M. F., and Botts, J., 1973, Segmental flexibility of the S-l moiety of myosin, Biochemistry 12:2250.CrossRefGoogle Scholar
  35. Mendelson, R. A., Putnam, S., and Morales, M. F., 1975, Time dependent fluorescence depolarization and lifetime studies of myosin subfragment-one in the presence of nucleotide and actin, J. Supramol. Struct. 3:162.CrossRefGoogle Scholar
  36. Morimoto, K., and Harrington, W. F., 1974, Evidence for structural changes in vertebrate thick filaments induced by calcium, J. Mol. Biol. 88:693.CrossRefGoogle Scholar
  37. Nihei, T., Mendelson, R. A., and Botts, J., 1974a, The site of force generation in muscle contraction as deduced from fluorescence polarization studies, Proc. Natl. Acad. Sci. U.S.A. 71:274.CrossRefGoogle Scholar
  38. Nihei, T., Mendelson, R. A., and Botts, J., 1974b, Use of fluorescence polarization to observe changes in attitude of S-l moieties in muscle fibers, Biophys.J. 14:236–242.CrossRefGoogle Scholar
  39. Offer, G., and Elliott, A., 1978, Can a myosin molecule bind to two actin filaments?, Nature (London) 271:325.CrossRefGoogle Scholar
  40. Perrin, F., 1934, Mouvement Brownien d’un ellipsoide. I. Dispersion diélectrique pour des molécules ellipsoidales, J. Phys. Radium VII 5:497.MATHCrossRefGoogle Scholar
  41. Perrin, F., 1936, Mouvement Brownien d’un ellipsoide. II. Rotation libre et dépolarisation des fluorescences: Translation et diffusion de molécules ellipsoidales, J. Phys. Radium VII 7:1.MATHCrossRefGoogle Scholar
  42. Reedy, M., Holmes, K. C., and Tregear, R. T., 1965, Induced changes in orientation of cross-bridges, Nature (London) 207:1276.CrossRefGoogle Scholar
  43. Rome, E., 1972, Relaxation of glycerinated muscle: Low-angle x-ray diffraction studies, J. Mol. Biol. 65:331.CrossRefGoogle Scholar
  44. Seidel, J. E., Chap, M., and Gergely, J., 1970, Effect of nucleotides on spin labels bound to S1 thiol groups of myosin, Biochemistry 9:3265.CrossRefGoogle Scholar
  45. Sekine, T., and Kielley, W. W., 1964, The enzymmatic properties of N-ethyl maleimide modified myosin, Biochim. Biophys. Acta 81:336.Google Scholar
  46. Sutoh, K., and Harrington, W. F., 1977, Cross-linking of myosin thick filaments under activating and rigor conditions: A study of radial disposition of the cross-bridges, Biochemistry 16:2441.CrossRefGoogle Scholar
  47. Takashi, R., Duke, J., Ue, K, and Morales, M. F., 1976, Defining the “fast-reacting” thiols of myosin by reaction with 1,5 IAEDANS, Arch. Biochem. Biophys. 175:279.CrossRefGoogle Scholar
  48. Taylor, E., 1979, Mechanism of actomyosin ATPase and the problem of muscle contraction, CRC Crit. Rev. Biochem. 6:103.CrossRefGoogle Scholar
  49. Thomas, D. D., and Cooke, R., 1980, Orientation of spin-labelled myosin heads in glycerinated muscle fibers, Biophys.J. 32:891.CrossRefGoogle Scholar
  50. Thomas, D. D., Seidel, J. C., Hyde, J. S., and Gergely, J., 1975, Motion of subfragment-1 in myosin and its supramolecular complexes: Saturation transfer electron paramagnetic resonance, Proc. Natl. Acad. Sci. U.S.A. 72:1729.CrossRefGoogle Scholar
  51. Thomas, D. D., Ishiwata, S., Seidel, J., and Gergeley, J., 1980, Submillisecond rotational dynamics of spin-labelled myosin heads in myofibrils, Biophys.J. 32:873.CrossRefGoogle Scholar
  52. Tregear, R. T., and Mendelson, R. A., 1975, Polarization from a helix of fluorophores and its relation to that obtained from muscle, Biophys.J. 15:455.CrossRefGoogle Scholar
  53. Trentham, D. R., Eccleston, J. F., and Bagshaw, C. R., 1976, Kinetic analysis of ATPase mechanisms, Q. Rev. Biophys. 9:2.CrossRefGoogle Scholar
  54. Wahl, P., 1979, Analysis of fluorescence anisotropy decays by a least squares method, Biophys. Chem. 10:91.CrossRefGoogle Scholar
  55. Weber, G., 1972, Uses of fluorescence in biophysics and some recent developments, Annu. Rev. Biophys. 1:553.CrossRefGoogle Scholar
  56. Yagi, N., and Matsubara, I., 1980, Myosin heads do not move on activation in highly stretched vertebrate striated muscle, Science 207:307.CrossRefGoogle Scholar
  57. Yguerabide, J., 1972, Nanosecond fluorescence spectroscopy of macromolecules, Methods En-zymol. 26:498.Google Scholar
  58. Yguerabide, J., Epstein, H. F., and Stryer, L., 1970, Segmental flexibility in an antibody molecule, J. Mol. Biol. 51:573.CrossRefGoogle Scholar
  59. Yu, H., and Stockmeyer, W. H., 1967, Intrinsic viscosity of a once broken rod, J. Chem. Phys. 47:1369.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Robert A. Mendelson
    • 1
  1. 1.Department of Biochemistry and Biophysics and The Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations