Advertisement

The Regulation of Cardiac-Muscle Contraction by Troponin

  • James D. Potter
  • Michael J. Holroyde
  • Steven P. Robertson
  • R. John Solaro
  • Evangelia G. Kranias
  • J. David Johnson

Abstract

The purpose of this review is to summarize the work we have done over the past several years regarding the regulation of cardiac muscle contraction by troponin (Tn). Studies have been carried out on the Ca2+-binding properties of cardiac Tn (the 1:1:1 molar-ratio complex of TnC, the Ca2+-binding subunit; TnI, the inhibitory subunit; and TnT, the tropomyosin-binding subunit) and TnC, and the effects of Mg2+ and phosphorylation on these parameters have been measured. The relationship between these parameters and the activation of myofibrillar ATPase in cardiac and skeletal muscle will be discussed and related to the known physiological properties of cardiac muscle in different contractile states (e.g., ³-adrenergic stimulation). Since the binding of Ca2+ to Tn is only the first step in the activation of muscle contraction, studies on Ca2+-induced alterations in the interactions of Tn subunits, tropomyosin (Tm), and actin required to bring about muscle contraction or relaxation will also be discussed.

Keywords

Muscle Contraction Specific Site Cardiac Troponin Myofibrillar ATPase Troponin Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailin, G., 1979, Phosphorylation of a bovine cardiac actin complex, Am. J. Physiol. 236:C41.Google Scholar
  2. Blinks, J. R., Lee, N. K. M., and Morgan, J. P., 1980, Ca2+ transients in mammalian heart muscle: Effects of inotropic agents on aequorin signals, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39:854.Google Scholar
  3. Brekke, C. J., and Greaser, M. L., 1976, Separation and characterization of the troponin components from bovine cardiac muscle, J. Biol. Chem. 251:866.Google Scholar
  4. Burtnick, L. D., and Kay, C. M., 1977, The calcium-binding properties of bovine cardiac troponin C., FEBS Lett. 75:105.CrossRefGoogle Scholar
  5. Collins, J. H., Greaser, M. L., Potter, J. D., and Horn, M. J., 1977, Determination of the amino acid sequence of troponin C from rabbit skeletal muscle, J. Biol. Chem. 252:6356.Google Scholar
  6. Ebashi, E., Endo, M., and Ohtsuki, I., 1969, Control of muscle contraction, Q. Rev. Biophys. 2:351.CrossRefGoogle Scholar
  7. England, P. J., 1975, Correlation between contraction and phosphorylation of the inhibitory subunit of troponin in perfused rat heart. FEBS Lett. 50:57.CrossRefGoogle Scholar
  8. Ezrailson, E. G., Potter, J. D., Michael, L., and Schwartz, A., 1977, Positive inotropy induced by ouabain, by increased frequency, by calcium, by R02-2985 (X537A) and by isoproterenol: The lack of correlation with phosphorylation of Tnl, J. Mol. Cell. Cardiol. 9:693.CrossRefGoogle Scholar
  9. Hirabayashi, T., and Perry, S. V., 1973, An immunochemical study of the calcium ion-binding protein (troponin C) and inhibitory protein (troponin-I) of the troponin complex and their interaction, Biochim. Biophys. Acta 351:273.Google Scholar
  10. Hitchcock, S. E., Huxley, H. E., and Szent-Györgyi, A. G., 1973, Calcium sensitive binding of troponin to actin-tropomyosin: A two-site model for troponin action, J. Mol. Biol. 80:825.CrossRefGoogle Scholar
  11. Holroyde, M. J., Howe, E., and Solaro, R. J., 1979, Modification of calcium requirements for activation of cardiac myofibrillar ATPase by cyclic AMP dependent phosphorylation, Biochim. Biophys. Acta 586:63.CrossRefGoogle Scholar
  12. Holroyde, M. J., Robertson, S. P., Johnson, J. D., Solaro, R. J., and Potter, J. D., 1980, The Ca2+ and Mg2+ binding sites on cardiac troponin and their role in the regulation of myofibrillar adenosine triphosphatase, J. Biol. Chem. 255:11688.Google Scholar
  13. Horwitz, J., Bullard, B., and Mercola, D., 1979, Interaction of troponin subunits, J. Biol. Chem. 254:350.Google Scholar
  14. Johnson, J. D., Charlton, S. C., and Potter, J. D., 1979, A fluorescence stopped flow analysis of Ca2+ exchange with troponin C., J. Biol. Chem. 254:3497.Google Scholar
  15. Johnson, J. D., Collins, J. H., Robertson, S. P., and Potter, J. D., 1980, A fluorescent probe study of Ca2+ binding to the Ca2+-specific sites of cardiac troponin and troponin C., J. Biol. Chem. 255:9635.Google Scholar
  16. Johnson, J. D., Robertson, S. P., Schwartz, A., and Potter, J. D., 1981, Ca2+ exchange with troponin and the regulation of muscle contraction, in: The Regulation of Muscle Contraction: Excitation-Contraction Coupling (A. D. Grinnell and M. A. B. Brazier, eds.), p. 241, Academic Press, New York.Google Scholar
  17. Kohama, K., 1979, Divalent cation binding properties of slow skeletal muscle troponin in comparison with those of cardiac and fast skeletal muscle troponins, J. Biochem. (Tokyo) 86:811.Google Scholar
  18. Leavis, P. C., and Kraft, E. L., 1978, Calcium binding to cardiac troponin C1,2, Arch. Biochem. Biophys. 186:411.CrossRefGoogle Scholar
  19. Leavis, P., Rosenfeld, S., Gergely, J., Grabarek, Z., and Drabikowski, W., 1978, Proteolytic fragments of troponin C, J. Biol. Chem. 253:5452.Google Scholar
  20. Moir, A. J. G., Solaro, R. J., and Perry, S. V., 1980, The site of phosphorylation of troponin I in the perfused rabbit heart, Biochem. J. 185:505.Google Scholar
  21. Mope, L., McClellan, G. B., and Winegrad, S., 1980, Calcium sensitivity of the contractile system and phosphorylation of troponin in hyperpermeable cardiac cells, J. Gen. Physiol. 75:271.CrossRefGoogle Scholar
  22. Perry, S. V., 1979, The regulation of contractile activity in muscle, Biochem. Soc. Trans. 7:593.Google Scholar
  23. Perry, S. V., Cole, H. A., Head, J. F., and Wilson, J. F., 1972, Localization and mode of action of the inhibitory protein component of the troponin complex, Cold Spring Harbor Symp. Quant. Biol. 37:251.CrossRefGoogle Scholar
  24. Potter, J. D., and Gergely, J., 1974, Troponin, tropomyosin and actin interactions in the Ca2+ regulation of muscle contraction, Biochemistry 13:2697.CrossRefGoogle Scholar
  25. Potter, J. D., and Gergely, J., 1975, The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase, J. Biol. Chem. 250:4628.Google Scholar
  26. Potter, J. D., Seidel, J. C., Leavis, P., Lehrer, S. S., and Gergely, J., 1976, Effect of Ca2+binding on troponin C, J. Biol. Chem. 251:7551.Google Scholar
  27. Potter, J. D., Johnson, J. D., Dedman, J. R., Schreiber, W. E., Mandel, F., Jackson, R. L., and Means, A. R., 1977, Calcium-binding proteins: Relationship of binding, structure, conformation and biological function, in: Calcium Binding Proteins and Calcium Function (R. H. Wasser-man, R. A. Corradino, E. Carafoli, R. H. Kretsinger, D. H., MacLennan, and F. L. Siegel, eds.), p. 239, Elsevier, New York, Amsterdam, Oxford.Google Scholar
  28. Potter, J. D., Robertson, S. P., Collins, J. H., and Johnson, J. D., 1980, The role of the Ca2+ and Mg2+ binding sites on troponin and other myofibrillar proteins in the regulation of muscle contraction, in: Calcium Binding Proteins: Structure and Function (Siegel, F. L., Carafoli, E., Kretsinger, R. H., MacLennan, D. H., and Wassenman, R. H., eds.), p. 279, Elsevier/North-Holland, New York.Google Scholar
  29. Prendergast, F. G., and Potter, J. D., 1979, Solution conformation and hydrodynamic properties of rabbit skeletal TnT, Biophys. Soc. Abstr. 25:250a.Google Scholar
  30. Robertson, S. P., Johnson, J. D., Holroyde, M. J., Kranias, E. G., Potter, J. D., and Solaro, R. J., 1981a, The effect of troponin I phosphorylation on the Ca2+-binding properties of the Ca2+-regulatory site of bovine cardiac troponin, J. Biol. Chem. (in press).Google Scholar
  31. Robertson, S. P., Johnson, J. D., and Potter, J. D., 1981b, The time course of Ca2+ exchange with calmodulin, troponin, parvalbumin and myosin in response to transient increases in Ca2+, Biophys. J. 34:559.CrossRefGoogle Scholar
  32. Solaro, R. J., Moir, A. J. G., and Perry, S. V., 1976, Phosphorylation of troponin I and the inotropic effect of adrenaline in the perfused rabbit heart, Nature (London) 262:615.CrossRefGoogle Scholar
  33. Solaro, R. J., Holroyde, M. J., Robertson, S. P., Johnson, J. D., and Potter, J. D., 1981, Troponin I phosphorylation: A unique regulator of the amounts of calcium required to activate cardiac myofibrils, Cold Spring Harbor Symp. Protein Phosphorylation 8:901–913.Google Scholar
  34. Stull, J. T., and Buss, J. E., 1977, Phosphorylation of cardiac troponin by cyclic adenosine 3′-5′-monophosphate-dependent protein kinase, J. Biol. Chem. 252:851.Google Scholar
  35. Stull, J. T., and Buss, J. E., 1978, Calcium binding properties of beef cardiac troponin, J. Biol. Chem. 253:5932.Google Scholar
  36. Van Eerd, J. P., and Takahashi, K., 1976, Determination of the complete amino acid sequence of bovine cardiac troponin C., Biochemistry 15:1171.CrossRefGoogle Scholar
  37. Weber, A., and Murray, J. M., 1973, Molecular control mechanism in muscle contraction, Physiol. Rev. 53:612.Google Scholar
  38. Wilkinson, J. M., and Grand, R. J. A., 1978, Comparison of amino acid sequence of troponin I from different striated muscles, Nature (London) 271:31.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • James D. Potter
    • 1
  • Michael J. Holroyde
    • 2
  • Steven P. Robertson
    • 1
  • R. John Solaro
    • 3
  • Evangelia G. Kranias
    • 1
  • J. David Johnson
    • 1
  1. 1.Section of Contractile Proteins, Department of Pharmacology and Cell BiophysicsUniversity of Cincinnati College of MedicineCincinnatiUSA
  2. 2.Department of PhysiologyUniversity of Cincinnati College of MedicineCincinnatiUSA
  3. 3.Department of Physiology and Department of Pharmacology and Cell BiophysicsUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations