Advertisement

Phosphorylation of Myosin and the Regulation of Smooth-Muscle Actomyosin

  • David J. Hartshorne

Abstract

It is accepted that the contractile event in all types of muscle is initiated by an increase in the intracellular concentration of Cap2+. One can consider the regulatory effect of Cap2+ under two broad categories. The first involves the regulation of the level of free Cap2+ within the cell and is usually linked to a membranous system, such as the sarcoplasmic reticulum; the second category implicates the contractile apparatus and more specifically is concerned with the effect that a given free Cap2+ level has on the function of the actomyosin system.

Keywords

Smooth Muscle Light Chain ATPase Activity Thin Filament Myosin Light Chain Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelstein, R. S., and Eisenberg, E., 1980, Regulation and kinetics of the actin-myosin-ATP interaction, Annu. Rev. Biochem. 49;921.CrossRefGoogle Scholar
  2. Adelstein, R. S., Conti, M. A., Hathaway, D. R., and Klee, C. B., 1978, Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3′:5′-monophosphate-dependent protein kinase, J. Biol. Chem. 253;8347.Google Scholar
  3. Adelstein, R. S., Pato, M. D., and Conti, M. A., 1981, The role of phosphorylation in regulating contractile proteins, Adv. Cyclic Nucleotide Res. 14 (in press).Google Scholar
  4. Aksoy, M. O., Williams, D., Sharkey, E. M., and Hartshorne, D. J., 1976, A relationship between Ca2+ sensitivity and phosphorylation of gizzard actomyosin, Biochem. Biophys. Res. Commun. 69;35.CrossRefGoogle Scholar
  5. Aksoy, M. O., Dillon, P. F., and Murphy, R. A., 1980, Phosphorylation of the 20,000 dalton myosin light chain (LC 20) regulates shortening velocity in vascular smooth muscle, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39;2042.Google Scholar
  6. Alexis, M. N., and Gratzer, W. B., 1978, Interaction of skeletal myosin light chains with calcium ions, Biochemistry 17;2319.CrossRefGoogle Scholar
  7. Amphlett, G. W., Syska, H., and Perry, S. V., 1976, The polymorphic forms of tropomyosin and troponin I in developing rabbit skeletal muscle, FEBS Lett. 63;22.CrossRefGoogle Scholar
  8. Anderson, N. L., 1979, The β and γ cytoplasmic actins are differentially thermostabilized by Mg ADP; y actin binds Mg ADP more strongly, Biochem. Biophys. Res. Commun. 89;486.CrossRefGoogle Scholar
  9. Ashton, F. T., Somlyo, A. V., and Somlyo, A. P., 1975, The contractile apparatus of vascular smooth muscle: Intermediate high voltage stereo electron microscopy, J. Mol. Biol. 98;17.CrossRefGoogle Scholar
  10. Bárány, M., Bárány, K., Gaetjens, E., and Bailin, G., 1966, Chicken gizzard myosin, Arch. Biochem. Biophys. 113;205.CrossRefGoogle Scholar
  11. Barron, J. T., Bárány, M., and Bárány, K., 1979, Phosphorylation of the 20,000-dalton light chain of myosin of intact arterial smooth muscle in rest and in contraction, J. Biol. Chem. 254;4954.Google Scholar
  12. Barron, J. T., Bárány, M., Bárány, K., and Storti, R. V., 1980, Reversible phosphorylation and dephosphorylation of the 20,000-dalton light chain of myosin during the contraction-relaxation-contraction cycle of arterial smooth muscle, J. Biol. Chem. 255;6238.Google Scholar
  13. Blumenthal, D. K., and Stull, J. T., 1980, Activation of skeletal muscle myosin light chain kinase by Ca2+ and calmodulin, Biochemistry 19:5608.CrossRefGoogle Scholar
  14. Bois, R. M., 1973, The organization of the contractile apparatus of vertebrate smooth muscle, Anat. Rec. 117;61.CrossRefGoogle Scholar
  15. Bolton, T. B., 1979, Mechanisms of action of transmitters and other substances on smooth muscle, Physiol. Rev. 59;606.Google Scholar
  16. Borejdo, J., and Oplatka, A., 1976, Evidence for myosin-linked regulation in guinea pig taenia coli muscle, Pfluegers Arch. 366;177.CrossRefGoogle Scholar
  17. Bremel, R. D., 1974, Myosin linked calcium regulation in vertebrate smooth muscle, Nature (London) 252:405.CrossRefGoogle Scholar
  18. Bremel, R. D., and Weber, A., 1975, Calcium binding to rabbit skeletal myosin under physiological conditions, Biochim. Biophys. Acta 376;366.CrossRefGoogle Scholar
  19. Bremel, R. D., Sobieszek, A., and Small, J. V., 1977, Regulation of actin-myosin interaction in vertebrate smooth muscle, in: The Biochemistry of Smooth Muscle (N. L. Stephens, ed.), pp. 533–549, University Park Press, Baltimore.Google Scholar
  20. Carsten, M. E., 1971, Uterine smooth muscle: Troponin, Arch. Biochem. Biophys. 147:353.CrossRefGoogle Scholar
  21. Cassidy, P. S., Hoar, P. E., and Kerrick, W. G. L., 1979, Irreversible thiophosphorylation and activation of tension in functionally skinned rabbit ileum strips by [35S] ATPγS, J. Biol. Chem. 254;11148.Google Scholar
  22. Chacko, S., Conti, M. A., and Adelstein, R. S., 1977, Effect of phosphorylation of smooth muscle myosin on actin activation of Ca2+ regulation, Proc. Natl. Acad. Sci. U.S.A. 74;129.CrossRefGoogle Scholar
  23. Cheung, W. Y., 1980, Calmodulin plays a pivotal role in cellular regulation, Science 207:19.CrossRefGoogle Scholar
  24. Cohen, D. M., and Murphy, R. A., 1978, Differences in cellular contractile protein contents among porcine smooth muscles: Evidence for variation in the contractile system, J. Gen. Physiol. 72;369.CrossRefGoogle Scholar
  25. Conti, M. A., and Adelstein, R. S., 1980, Phosphorylation by cyclic adenosine 3′:5′-monophosphate-dependent protein kinase regulates myosin light chain kinase, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39;1569.Google Scholar
  26. Cooke, P., 1976, A filamentous cytoskeleton in vertebrate smooth muscle fibers, J. Cell Biol. 68;539.CrossRefGoogle Scholar
  27. Cooke, P. H., and Fay, F. S., 1972, Correlation between fiber length, ultrastructure, and the length-tension relationship of mammalian smooth muscle, J. Cell Biol. 52;105.CrossRefGoogle Scholar
  28. Craig, R., and Megerman, J., 1977, Assembly of smooth muscle myosin into side-polar filaments, J. Cell Biol. 75;990.CrossRefGoogle Scholar
  29. Crosby, N. D., and Diamond, J., 1980, Effects of phenothiazines on calcium induced contractions of chemically skinned smooth muscle, Proc. West. Pharmacol. Soc. 23;335.Google Scholar
  30. Crouch, T. H., and Klee, C. B., 1980, Positive cooperative binding of calcium to bovine brain calmodulin, Biochemistry 19;3692.CrossRefGoogle Scholar
  31. Csapo, W., 1948, Actomyosin content of the uterus, Nature (London) 162:218.CrossRefGoogle Scholar
  32. Cummins, P., 1979, The homology of the α-chains of cardiac and skeletal rabbit tropomyosin, J. Mol. Cell. Cardiol. 11;109.CrossRefGoogle Scholar
  33. Cummins, P., and Perry, S. V., 1973, The subunits and biological activity of polymorphic forms of tropomyosin, Biochem. J. 133;765.Google Scholar
  34. Cummins, P., and Perry, S. V., 1974, Chemical and immunochemical characteristics of tropomyosins from striated and smooth muscle, Biochem. J. 141;49.Google Scholar
  35. Dabrowska, R., and Hartshorne, D. J., 1978, A Ca2+-and modulator-dependent myosin light chain kinase from non-muscle cells, Biochem. Biophys. Res. Commun. 85;1352.CrossRefGoogle Scholar
  36. Dabrowska, R., Aromatorio, D., Sherry, J. M. F., and Hartshorne, D. J., 1977, Composition of the myosin light chain kinase from chicken gizzard, Biochem. Biophys. Res. Commun. 78:1263.CrossRefGoogle Scholar
  37. Dabrowska, R., Sherry, J. M. F., Aromatorio, D. K., and Hartshorne, D. J., 1978, Modulator protein as a component of the myosin light chain kinase from chicken gizzard, Biochemistry 17;253.CrossRefGoogle Scholar
  38. DeLanerolle, P., and Stull, J. T., 1980, Myosin phosphorylation during contraction and relaxation of tracheal smooth muscle, J. Biol. Chem. 255;9993.Google Scholar
  39. Devine, C. E., and Somlyo, A. P., 1971, Thick filaments in vascular smooth muscle, J. Cell Biol. 49;636.CrossRefGoogle Scholar
  40. DiSalvo, J., Gruenstein, E., and Silver, P., 1978, Ca2+ dependent phosphorylation of bovine aortic actomyosin, Proc. Soc. Exp. Biol. Med. 158;410.Google Scholar
  41. Driska, S. P., 1976, Calcium control of smooth muscle contractile proteins, Ph.D. thesis, Carnegie-Mellon University, Pittsburgh.Google Scholar
  42. Driska, S., and Hartshorne, D. J., 1975, The contractile proteins of smooth muscle: Properties and components of a Ca2+-sensitive actomyosin from chicken gizzard, Arch. Biochem. Biophys. 167:203.CrossRefGoogle Scholar
  43. Driska, S., Aksoy, M. O., and Murphy, R. A., 1981, Myosin light chain phosphorylation associated with contraction in arterial smooth muscle, Am. J. Physiol. 240:C222.Google Scholar
  44. Ebashi, S., 1963, Third component participating in the superprecipitation of “natural actomyosin,” Nature (London) 200;1010.CrossRefGoogle Scholar
  45. Ebashi, S., Iwakura, H., Nakajima, H., Nakamura, R., and Ooi, Y., 1966, New structural proteins from dog heart and chicken gizzard, Biochem. Z. 345; 201.Google Scholar
  46. Ebashi, S., Kodama, A., and Ebashi, F., 1968, Troponin. I. Preparation and physiological function, J. Biochem. (Tokyo) 64;465.Google Scholar
  47. Ebashi, S., Toyo-oka, R., and Nonumura, Y., 1975, Gizzard troponin, J. Biochem. (Tokyo) 78;859.Google Scholar
  48. Ebashi, S., Nonomura, Y., Toyo-oka, T., and Katayama, E., 1976, Regulation of muscle contraction by the calcium-troponin-tropomyosin system, in: Calcium in Biological Systems (C. J. Duncan, ed.), pp. 349–360, Cambridge University Press, London.Google Scholar
  49. Ebashi, S., Mikawa, T., Hirata, M., Toyo-oka, T., and Nonomura, Y., 1977, Regulatory proteins of smooth muscle, in: Excitation-Contraction Coupling in Smooth Muscle (R. Casteels, T. God-fraind, and J. C. Rüegg, eds.), pp. 325–334, Elsevier/North-Holland, Amsterdam.Google Scholar
  50. Ebashi, S., Mikawa, T., Hirata, M., and Nonomura, Y., 1978, The regulatory role of calcium in muscle, Ann. N. Y. Acad. Sci. 307;451.CrossRefGoogle Scholar
  51. Fine, R. E., and Blitz, A. L., 1975, A chemical comparison of tropomyosins from muscle and non-muscle tissues, J. Mol. Biol. 95;447.CrossRefGoogle Scholar
  52. Ford, G. D., and Hess, M. L., 1975, Calcium-accumulating properties of subcellular fractions of bovine vascular smooth muscle, Circ. Res. 37;580.Google Scholar
  53. Frearson, N., Focant, B. W. W., and Perry, S. V., 1976, Phosphorylation of a light chain component of myosin from smooth muscle, FEBS Lett. 63;27.CrossRefGoogle Scholar
  54. Frederiksen, D. W., 1976, Myosin-mediated Ca++-regulation of actomyosin-adenosinetriphos-phatase from porcine aorta, Proc. Natl. Acad. Sci. U.S.A. 73;2706.CrossRefGoogle Scholar
  55. Gergely, P., Vereb, G., and Bot, G., 1976, Thiophosphate-activated Phosphorylase kinase as a probe in the regulation of Phosphorylase phosphatase, Biochim. Biophys. Acta 429:809.Google Scholar
  56. Glass, D. B., and Krebs, E. G., 1980, Protein phosphorylation catalyzed by cyclic AMP-dependent and cyclic GMP-dependent protein kinase, Annu. Rev. Pharmacol. Toxicol. 20:363.CrossRefGoogle Scholar
  57. Gorecka, A., Aksoy, M. O., and Hartshorne, D. J., 1976, The effect of phosphorylation of gizzard myosin on actin activation, Biochem. Biophys. Res. Commun. 71:325.CrossRefGoogle Scholar
  58. Grand, R. J. A., Perry, S. V., and Weeks, R. A., 1979, Troponin C-like proteins (calmodulins) from mammalian smooth muscle and other tissues, Biochem. J. 177:521.Google Scholar
  59. Gratecos, D., and Fischer, E. H., 1974, Adenosine 5′-0(3-thiotriphosphate) in the control of Phosphorylase activity, Biochem. Biophys. Res. Commun. 58:960.CrossRefGoogle Scholar
  60. Hamoir, G., and Laszt, L., 1962, Tonomyosin of arterial muscle, Nature (London) 193:682.CrossRefGoogle Scholar
  61. Hanson, J., and Lowy, J., 1964, The problem of the location of myosin in vertebrate smooth muscle (discussion), Proc. Roy. Soc. London Ser B 160:523.CrossRefGoogle Scholar
  62. Hartshorne, D. J., and Gorecka, A., 1980, The biochemistry of the contractile proteins of smooth muscle, in: Handbook of Physiology, Section 2, The Cardiovascular System, Vol. II, Vascular Smooth Muscle (D. F. Bohr, A. P. Somlyo, and H. V. Sparks, eds.), pp. 93–120, American Physiology Society, Bethesda, Maryland.Google Scholar
  63. Hartshorne, D. J., and Persechini, A. J., 1980, Phosphorylation of myosin as a regulatory component in smooth muscle, Ann. N. Y. Acad. Sci. 356:130.CrossRefGoogle Scholar
  64. Hartshorne, D. J., Abrams, L., Aksoy, M. O., Dabrowska, R., Driska, S., and Sharkey, E. M., 1977a, Molecular basis for the regulation of smooth muscle actomyosin, in: The Biochemistry of Smooth Muscle (N. L. Stephens, ed.), pp. 513–532, University Park Press, Baltimore.Google Scholar
  65. Hartshorne, D. J., Gorecka, A., and Aksoy, M. O., 1977b, Aspects of the regulatory mechanism in smooth muscle, in: Excitation-Contraction Coupling in Smooth Muscle (R. Casteels, T. God-fraind, and J. C. Rüegg, eds.), pp. 377–384, Elsevier/North-Holland, Amsterdam.Google Scholar
  66. Hartshorne, D. J., Siemankowski, R. F., and Aksoy, M. O., 1980, Ca regulation in smooth muscle and phosphorylation: Some properties of the myosin light chain kinase, in: Regulatory Mechanism of Muscle Contraction (S. Ebashi, K. Maruyama, and M. Endo, eds.), pp. 287–301, Japan Scientific Societies Press, Tokyo.Google Scholar
  67. Hathaway, D. R., and Adelstein, R. S., 1979, Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity, Proc. Natl. Acad. Sci. U.S.A. 76:1653.CrossRefGoogle Scholar
  68. Heumann, H.-G., 1969, Gibt es in glatten Vertebraten muskeln dicke Filamente? Elektronenmikroskopische Untersuchungen an der Darm-muskulature der Hausmaus, Zool. Anz (Suppl. BD) 33(Verh. Zool. Ges.):416.Google Scholar
  69. Hidaka, H., Naka, M., and Yamaki, T., 1979, Effect of novel specific myosin light chain kinase inhibitors on Ca2+-activated Mg2+-ATPase of chicken gizzard actomyosin, Biochem. Biophys. Res. Commun. 90:694.CrossRefGoogle Scholar
  70. Hidaka, H., Yamaki, T., Naka, M., Tanaka, T., Hayashi, H., and Kobayashi, R., 1980, Calcium-regulated modulator protein interacting agents inhibit smooth muscle calcium-stimulated protein kinase and ATPase, Mol. Pharmacol. 17:66.Google Scholar
  71. Hinssen, H., D’Haese, J., Small, J. V., and Sobieszek, A., 1978, Mode of filament assembly of myosins from muscle and nonmuscle cells, J. Ultrastruct. Res. 64:282.CrossRefGoogle Scholar
  72. Hirata, M., Mikawa, T., Nonomura, Y., and Ebashi, S., 1980, Ca2+ regulation in vascular smooth muscle. II. Ca2+ binding of aorta leiotonin, J. Biochem. (Tokyo) 87:369.Google Scholar
  73. Hoar, P. E., and Kerrick, W. G. L., 1980, Catalytic subunit of c-AMP dependent protein kinase: Effect on contraction of functionally skinned muscle fibers, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39:1817.Google Scholar
  74. Hoar, P. E., Kerrick, W. G. L., and Cassidy, P. S., 1979, Chicken gizzard: Relation between calcium-activated phosphorylation and contraction, Science 204:503.CrossRefGoogle Scholar
  75. Holroyde, M. J., Potter, J. D., and Solaro, R. J., 1979, The calcium binding properties of phos-phorylated and unphosphorylated cardiac and skeletal myosins, J. Biol. Chem. 254:6478.Google Scholar
  76. Huszar, G., and Bailey, P., 1979, Relationship between actin-myosin interaction and myosin light chain phosphorylation in human placental smooth muscle, Am. J. Obstet. Gynecol. 135:718.Google Scholar
  77. Huxley, A. F., 1957, Muscle structure and theories of contraction, Prog. Biophys. Mol. Biol. 7:257.Google Scholar
  78. Huxley, H. E., 1963, Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle, J. Mol. Biol. 7:281.CrossRefGoogle Scholar
  79. Ikebe, M., Onishi, H., and Watanabe, S., 1977, Phosphorylation and dephosphorylation of a light chain of the chicken gizzard myosin molecule, J. Biochem. (Tokyo) 82:299.Google Scholar
  80. Ikebe, M., Aiba, T., Onishi, H., and Watanabe, S., 1978, Calcium sensitivity of contractile proteins from chicken gizzard muscle, J. Biochem. (Tokyo) 83:1643.Google Scholar
  81. Ito, N., and Hotta, K., 1976, Regulatory protein of bovine tracheal smooth muscle, J. Biochem. (Tokyo) 80:401.Google Scholar
  82. Ito, N., Takagi, T., and Hotta, K., 1976, Regulatory protein of vascular smooth muscle, J. Biochem. (Tokyo) 80:899.Google Scholar
  83. Jakes, R., Northrop, F., and Kendrick-Jones, J., 1976, Calcium binding regions of myosin “regulatory” light chains, FEBS Lett. 70:229.CrossRefGoogle Scholar
  84. Janis, R. A., and Gualteri, R. T., 1978, Contraction of intact smooth muscle is associated with the phosphorylation of a 20,000 dalton protein, Physiologist 21:59.Google Scholar
  85. Johansson, B., and Somlyo, A. P., 1980, Electrophysiology and excitation-contraction coupling, in: Handbook of Physiology, Section 2, The Cardiovascular System, Vol. II, Vascular Smooth Muscle (D. F. Bohr, A. P. Somlyo, and H. V. Sparks, eds.), pp. 301–323, American Physiology Society, Bethesda, Maryland.Google Scholar
  86. Johnson, L. S., 1974, Non-identical tropomyosin subunits in rat skeletal muscle, Biochim. Biophys. Acta 371:219.Google Scholar
  87. Jones, A. W., Somlyo, A. P., and Somlyo, A. V., 1973, Potassium accumulation in smooth muscle and associated ultrastructural changes, J. Physiol (London) 232:247.Google Scholar
  88. Kaminer, B., 1969, Synthetic myosin filaments from vertebrate smooth muscle, J. Mol. Biol 39:257.CrossRefGoogle Scholar
  89. Katoh, N., and Kubo, S., 1977, Purification and some properties of rabbit stomach myosin, J. Biochem. (Tokyo) 81:1497.Google Scholar
  90. Kelley, R. E., and Rice, R. V., 1968, Localization of myosin filaments in smooth muscle, J. Cell Biol 37:105.CrossRefGoogle Scholar
  91. Kendrick-Jones, J., 1973, The subunit structure of gizzard myosin, Philos. Trans. R. Soc. London Ser.B 265:183.CrossRefGoogle Scholar
  92. Kendrick-Jones, J., Lehman, W., and Szent-Györgyi, A. G., 1970, Regulation in molluscan muscles, J. Mol Biol. 54:313.CrossRefGoogle Scholar
  93. Kendrick-Jones, J., Szentkiralyi, E. M., and Szent-Györgyi, A. G., 1976, Regulatory light chains in myosins, J. Mol Biol. 104;747.CrossRefGoogle Scholar
  94. Kerrick, W. G. L., Hoar, P. E., and Cassidy, P. S., 1980, Ca2+-activated tension: The role of myosin light chain phosphorylation, Fed Proc. Fed. Am. Soc. Exp. Biol. 39;1558.Google Scholar
  95. Kuwayama, H., and Yagi, K., 1979, Ca2+ binding of pig cardiac myosin subfragment-1 and g2 light chain, J. Biochem. (Tokyo) 85:1245.Google Scholar
  96. Laszt, L., 1964, Was ist Gefässtonus? Untersuchungen über die Beziehungen zwischen Gefässmuskel vontraktion und-volumen äunderung, Angiologica 1:346.Google Scholar
  97. Laszt, L., and Hamoir, G., 1961, Etude par electrophorèse et ultracentrifugation de la composition protéinique de la conche musculaire des carotides de bovidé, Biochim. Biophys. Acta 50:430.CrossRefGoogle Scholar
  98. Lee, E. Y. C., Silberman, S. R., Ganapathi, M. K., Petrovi, S., and Paris, H., 1980, The phospho-protein phosphatases: Properties of the enzymes involved in the regulation of glycogen metabolism, Adv. Cyclic Nucleotide Res. 13:95.Google Scholar
  99. Leger, J., Bouveret, P., Schwartz, K., and Swynghedauw, B., 1976, A comparative study of skeletal and cardiac tropomyosin: Subunits, thiol group content and biological activities, Pfluegers Arch. 362:271.CrossRefGoogle Scholar
  100. Lehman, W., and Szent-Györgyi, A. G., 1975, Regulation of muscular contraction: Distribution of actin control and myosin control in the animal kingdom, J. Gen. Physiol 66:1.CrossRefGoogle Scholar
  101. Lehman, W., Kendrick-Jones, J., and Szent-Györgyi, A. G., 1972, Myosin-linked regulatory systems: Comparative studies, Cold Spring Harbor Symp. Quant. Biol 37:319.CrossRefGoogle Scholar
  102. Levin, R. M., and Weiss, B., 1977, Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide phosphodiesterase, Mol Pharmacol 13:690.Google Scholar
  103. Levin, R. M., and Weiss, B., 1979, Selective binding of antipsychotics and other psychoactive agents to the calcium-dependent activator of cyclic nucleotide phosphodiesterase, J. Pharmacol. Exp. Ther. 208:454.Google Scholar
  104. Lowy, J., and Small, J. V., 1970, The organization of myosin and actin in vertebrate smooth muscle, Nature (London) 227:46.CrossRefGoogle Scholar
  105. Mak, A. S., Lewis, W. G., and Smillie, L. B., 1979, Amino acid sequences of rabbit skeletal β- and cardiac tropomyosins, FEBS Lett. 105:232.CrossRefGoogle Scholar
  106. Manning, D. R., and Stull, J. T., 1979, Myosin light chain phosphorylation and Phosphorylase a activity in rat extensor digitorum longus muscle, Biochem. Biophys. Res. Commun. 90:164.CrossRefGoogle Scholar
  107. Marston, S. B., and Taylor, E. W., 1978, Mechanism of myosin and actomyosin ATPase in chicken gizzard smooth muscle, FEBS Lett. 86:167.CrossRefGoogle Scholar
  108. Marston, S. B., Trevett, R. M., and Walters, M., 1980, Calcium ion-regulated thin filaments from vascular smooth muscle. Biochem. J. 185:355.Google Scholar
  109. Matsuda, G., Suzuyama, Y., Maita, T., and Umegane, T., 1977, The L-2 light chain of chicken skeletal muscle myosin, FEBS Lett. 85:53.CrossRefGoogle Scholar
  110. Means, A. R., and Dedman, J. R., 1980, Calmodulin—an intracellular calcium receptor, Nature (London) 285:73.CrossRefGoogle Scholar
  111. Mikawa, T., Nonomura, Y., and Ebashi, S., 1977, Does phosphorylation of myosin light chain have direct relation to regulation in smooth muscle?, J. Biochem. (Tokyo) 82:1789.Google Scholar
  112. Morgan, M., Perry, S. V., and Ottaway, J., 1976, Myosin light-chain phosphatase, Biochem. J. 157:687.Google Scholar
  113. Mrwa, U., and Hartshorne, D. J., 1980, Phosphorylation of smooth muscle myosin and myosin light chains, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39:1564.Google Scholar
  114. Mrwa, U., and Rüegg, J. C., 1975, Myosin-linked calcium regulation in vascular smooth muscle, FEBS Lett. 60:81.CrossRefGoogle Scholar
  115. Mrwa, U., and Rüegg, J. C., 1977, The role of the regulatory light chain in pig carotid smooth muscle ATPase, in: Excitation-Contraction Coupling in Smooth Muscle (R. Casteels, T. God-fraind, and J. C. Rüegg, eds.), pp. 353–357, Elsevier/North-Holland, Amsterdam.Google Scholar
  116. Mrwa, U., Achtig, I., and Rüegg, J. C., 1974, Influences of calcium concentration and pH on the tension development and ATPase activity of the arterial actomyosin contractile system, Blood Vessels 11:277.Google Scholar
  117. Mrwa, U., Paul, R. J., Kreye, V. A. W., and Rüegg, J. C., 1975, The contractile mechanism of vascular smooth muscle, INSERM 50:319.Google Scholar
  118. Mrwa, U., Troschka, M., and Rüegg, J. C., 1979, Cyclic AMP-dependent inhibition of smooth muscle actomyosin, FEBS Lett. 107:371.CrossRefGoogle Scholar
  119. Murphy, R. A., 1979, Filament organization and contractile function in vertebrate smooth muscle, Annu. Rev. Physiol. 41:737.CrossRefGoogle Scholar
  120. Murphy, R. A., Bohr, D. F., and Newman, D. L., 1969, Arterial actomyosin: Mg, Ca, and ATP ion dependencies for ATPase activity, Am. J. Physiol. 217:666.Google Scholar
  121. Murphy, R. A., Herlihy, J. T., and Megerman, J., 1974, Force-generating capacity and contractile protein content of arterial smooth muscle, J. Gen. Physiol. 64:691.CrossRefGoogle Scholar
  122. Murphy, R. A., Aksoy, M. O., and Dillon, P. R., 1980, Regulation in vascular smooth muscle: Ca++-dependent myosin light chain (LC) phosphorylation mediates cross-bridge cycling, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39:1817.Google Scholar
  123. Murray, J. M., and Weber, A., 1974, The cooperative action of muscle proteins, Sci. Am. 230:58.CrossRefGoogle Scholar
  124. Nairn, A. C., and Perry, S. V., 1979, Calmodulin and myosin light-chain kinase of rabbit fast skeletal muscle, Biochem. J. 179:89.Google Scholar
  125. Needham, D. M., and Cawkwell, J. M., 1956, Some properties of the actomyosin-like protein of the uterus, Biochem. J. 63:337.Google Scholar
  126. Nonomura, Y., 1968, Myofilaments in smooth muscle of guinea pig’s taenia coli, J. Cell Biol. 39:741.CrossRefGoogle Scholar
  127. Nonomura, Y., and Ebashi, S., 1980, Calcium regulatory mechanism in vertebrate smooth muscle, Biomed. Res. 1:1.Google Scholar
  128. Nonomura, Y., Mikawa, T., and Ebashi, S., 1980, Ca2+ sensitive thin filament from chicken gizzard smooth muscle, Proc. Jpn. Acad. 56(B): 178.Google Scholar
  129. Okamoto, Y., and Sekine, T., 1978, Effects of tryptic digestion on the enzymatic activities of chicken gizzard myosin, J. Biochem. (Tokyo) 83:1375.Google Scholar
  130. Onishi, H., and Watanabe, S., 1979, Chicken gizzard heavy meromyosin that retains the two light-chain components, including a phosphorylatable one, J. Biochem. (Tokyo) 85:457.Google Scholar
  131. Onishi, H., Iijima, S., Anzai, H., and Watanabe, S., 1979, The possible role of myosin light-chain phosphatase in relaxation of chicken gizzard muscle, J. Biochem. (Tokyo) 86:1283.Google Scholar
  132. Ookubo, N., Ueno, H., and Ooi, T., 1975, Similarities and differences of the α and β components of tropomyosin, J. Biochem. (Tokyo) 78:739.Google Scholar
  133. Parry, D. A. D., and Squire, J. M., 1973, Structural role of tropomyosin in muscle regulation: Analysis of the x-ray diffraction patterns from relaxed and contracting muscles, J. Mol. Biol. 75:33.CrossRefGoogle Scholar
  134. Pato, M. D., and Adelstein, R. S., 1980, Dephosphorylation of the 20,000-dalton light chain of myosin by two different phosphatases from smooth muscle, J. Biol. Chem. 255:6535.Google Scholar
  135. Pemrick, S. J., 1980, The phosphorylated L2 light chain of skeletal myosin is a modifier of the actomyosin ATPase, J. Biol. Chem. 255:8836.Google Scholar
  136. Perrie, W. R., Smillie, L. B., and Perry, S. V., 1973, A phosphorylated light-chain component of myosin from skeletal muscle, Biochem. J. 135:151.Google Scholar
  137. Pires, E. M. V., and Perry, S. V., 1977, Purification and properties of myosin light-chain kinase from fast skeletal muscle, Biochem. J. 167:137.Google Scholar
  138. Rubenstein, P. A., and Spudich, J. A., 1977, Actin microheterogeneity in chick embryo fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 74:120.Google Scholar
  139. Rüegg, J. C., Strassner, E., and Schirmer, R. H., 1965, Extraktion und Reinigung von Arterien-Actomyosin, Actin, und Extraglobulin, Biochem. Z. 343:70.Google Scholar
  140. Russell, W. E., 1973, Insolubilization and activation of arterial actomyosin by bivalent cations, Eur. J. Biochem. 33:459.CrossRefGoogle Scholar
  141. Seidel, J. C., 1978, Chymotryptic heavy meromyosin from gizzard myosin: A proteolytic fragment with the regulatory properties of the intact myosin, Biochem. Biophys. Res. Commun. 85:107.CrossRefGoogle Scholar
  142. Seidel, J. C., 1980, Fragmentation of gizzard myosin by α-chymotrypsin and papain, the effects on ATPase activity, and the interaction with actin, J. Biol. Chem. 255:4355.Google Scholar
  143. Sekine, R., Barnett, L. M., and Kielley, W. W., 1962, The active site of myosin adenosine triphosphatase. I. Localization of one of the sulfhydryl groups, J. Biol. Chem. 237:2769.Google Scholar
  144. Sherry, J. M. F., Gorecka, A., Aksoy, M. O., Dabrowska, R., and Hartshorne, D. J., 1978, Roles of calcium and phosphorylation in the regulation of the activity of gizzard myosin, Biochemistry 17:4411.CrossRefGoogle Scholar
  145. Sheterline, P., 1980, Trifluoperazine can distingish between myosin light chain kinase-linked and troponin C-linked control of actomyosin interaction by Ca++, Biochem. Biophys. Res. Commun. 93:194.CrossRefGoogle Scholar
  146. Shibata, N., Yamagami, R., Yoneda, S., Akagami, H., Takeuchi, K., Tanaka, K., and Okamura, Y., 1973, Identification of myosin A, actin and native tropomyosin constitution of arterial contractile protein (myosin B) and their characteristics, Jpn. Circ.J. 37:229.CrossRefGoogle Scholar
  147. Shoenberg, C. F., 1965, Contractile proteins of vertebrate smooth muscle, Nature (London) 206;526.CrossRefGoogle Scholar
  148. Shoenberg, C. F., 1969, An electron microscope study of the influence of divalent ions on myosin filament formation in chicken gizzard extracts and homogenates, Tissue Cell 1:83.CrossRefGoogle Scholar
  149. Shoenberg, C. F., and Haselgrove, J. C., 1974, Filaments and ribbons in vertebrate smooth muscle, Nature (London) 249;152.CrossRefGoogle Scholar
  150. Siegman, M. J., Butler, T. M., Mooers, S. U., and Davies, R. E., 1976a, Calcium-dependent resistance to stretch and stress relaxation in resting smooth muscles, Am. J. Physiol. 231:1501.Google Scholar
  151. Siegman, M. J., Butler, T. M., Mooers, S. U., and Davies, R. E., 1976b, Cross-bridge attachment, resistance to stretch, and viscoelasticity in resting mammalian smooth muscle, Science 191:383.CrossRefGoogle Scholar
  152. Silver, P. J., and DiSalvo, J., 1979, Adenosine 3′:5′-monophosphate-mediated inhibition of myosin light chain phosphorylation in bovine aortic actomyosin, J. Biol. Chem. 254:9951.Google Scholar
  153. Small, J. V., 1977, Studies on isolated smooth muscle cells: The contractile appartus, J. Cell Sci. 24:327.Google Scholar
  154. Small, J. V., and Sobieszek, A., 1977a, Studies on the function and composition of the 10-nm (100 Å) filaments of vertebrate smooth muscle, J. Cell Sci. 23:243.Google Scholar
  155. Small, J. V., and Sobieszek, A., 1977b, Ca-regulation of mammalian smooth muscle actomyosin via a kinase-phosphatase-dependent phosphorylation and dephosphorylation of the 20,000-Mr light chain of myosin, Eur. J. Biochem. 76:521.CrossRefGoogle Scholar
  156. Small, J. V., and Squire, J. M., 1972, Structural basis of contraction in vertebrate smooth muscle, J. Mol. Biol. 67:117.CrossRefGoogle Scholar
  157. Sobieszek, A., 1977a, Vertebrate smooth muscle myosin: Enzymatic and structural properties, in: The Biochemistry of Smooth Muscle (N. L. Stephens, ed.), pp. 413–443, University Park Press, Baltimore.Google Scholar
  158. Sobieszek, A., 1977b, Ca-linked phosphorylation of a light chain of vertebrate smooth-muscle myosin, Eur. J. Biochem. 73:477.CrossRefGoogle Scholar
  159. Sobieszek, A., and Bremel, R. D., 1975, Preparation and properties of vertebrate smooth-muscle myofibrils and actomyosin, Eur. J. Biochem. 55:49.CrossRefGoogle Scholar
  160. Sobieszek, A., and Small, J. V., 1976, Myosin-linked calcium regulation in vertebrate smooth muscle, J. Mol. Biol. 102:75.CrossRefGoogle Scholar
  161. Sobieszek, A., and Small, J. V., 1977, Regulation of the actin-myosin interaction in vertebrate smooth muscle: Activation via a myosin light-chain kinase and the effect of tropomyosin, J. Mol. Biol. 112:559.CrossRefGoogle Scholar
  162. Somlyo, A. V., 1980, Ultrastructure of vascular smooth muscle, in: Handbook of Physiology, Section 2, The Cardiovascular System, Vol. II, Vascular Smooth Muscle (D. F. Bohr, A. P. Somlyo, and H. V. Sparks, eds.), pp. 33–67, American Physiology Society, Bethesda, Maryland.Google Scholar
  163. Somlyo, A. P., Devine, C. E., Somlyo, A. V., and Rice, R. V., 1973, Filament organization in vertebrate smooth muscle, Philos. Trans. R. Soc. London Ser. B 265:223.CrossRefGoogle Scholar
  164. Somlyo, A. V., Ashton, F. T., Lemanski, L. F., Vallières, J., and Somlyo, A. P., 1977, Filament organization and dense bodies in vertebrate smooth muscle, in: The Biochemistry of Smooth Muscle (N. L. Stephens, ed.), pp. 445–471, University Park Press, Baltimore.Google Scholar
  165. Sparrow, M. P., and van Bockxmeer, F. M., 1972, Arterial tropomyosin and a relaxing protein fraction from vascular smooth muscle: Comparison with skeletal tropomyosin and troponin, J. Biochem. (Tokyo) 72:1075.Google Scholar
  166. Sparrow, M. P., Maxwell, L. C., Rüegg, J. C., and Bohr, D. R., 1970, Preparation and properties of a calcium ion-sensitive actomyosin from arteries, Am. J. Physiol. 219:1366.Google Scholar
  167. Stone, D., and Smillie, L. V., 1978, The amino acid sequence of rabbit skeletal α-tropomyosin: The NH2-terminal half and complete sequence, J. Biol. Chem. 253:1137.Google Scholar
  168. Stone, D., Sodek, J., Johnson, P., and Smillie, L. B., 1974, Tropomyosin: Correlation of amino acid sequence and structure, Proc. 9th FEBS Meet. (Budapest) 31:125.Google Scholar
  169. Strasburg, G. M., and Greaser, M. L., 1976, The native subunit pattern of tropomyosin, FEBS Lett. 72:11.CrossRefGoogle Scholar
  170. Stull, J. T., Blumenthal, D. K., deLanerolle, P., High, C. W., and Manning, D. R., 1978, Phosphorylation and regulation of contractile proteins, Adv. Pharmacol. Ther. 3:171.Google Scholar
  171. Suzuki, H., Onishi, H., Takahashi, K., and Watanabe, S., 1978, Structure and function of chicken gizzard myosin, J. Biochem. (Tokyo) 84:1529.Google Scholar
  172. Szent-Györgyi, A. G., Szentkiralyi, E. M., and Kendrick-Jones, J., 1973, The light chains of scallop myosin as regulatory subunits, J. Mol. Biol. 74:179.CrossRefGoogle Scholar
  173. Takeuchi, K., and Tonomura, Y., 1977, Kinetic and regulatory properties of myosin adenosine-triphosphatase purified from arterial smooth muscle, J. Biochem. (Tokyo) 82:813.Google Scholar
  174. Vandekerckhove, J., and Weber, K., 1978a, Mammalian cytoplasmic actins are the products of at least two genes and differ in primary structure in at least 25 identified positions from skeletal muscle actins, Proc. Natl. Acad. Sci. U.S.A. 7b5:1106.CrossRefGoogle Scholar
  175. Vandekerckhove, J., and Weber, K., 1978b, Actin amino-acid sequences: Comparison of actins from calf thymus, bovine brain, and SV 40-transformed mouse 3T3 cells with rabbit skeletal muscle actin, Eur. J. Biochem. 90:451.CrossRefGoogle Scholar
  176. Vibert, P. J., Haselgrove, J. C., Lowy, J., and Poulsen, F. R., 1972, Structural changes in actin-containing filaments of muscle, J. Mol. Biol. 71:757.CrossRefGoogle Scholar
  177. Wachsberger, P., and Kaldor, G., 1971, Studies on uterine myosin A and actomyosin, Arch. Biochem. Biophys. 143:127.CrossRefGoogle Scholar
  178. Wachsberger, P. R., and Pepe, F. A., 1974, Purification of uterine myosin and synthetic filament formation, J. Mol. Biol. 88:385.CrossRefGoogle Scholar
  179. Waisman, D. M., Singh, T. J., and Wang, J. H., 1978, The modulator-dependent protein kinase: A multifunctional protein kinase activatable by the Ca2+-dependent modulator protein of the cyclic nucleotide system, J. Biol. Chem. 253:3387.Google Scholar
  180. Walsh, M. P., Vallet, B., Autric, F., and Demaille, J. G., 1979, Purification and characterization of bovine cardiac calmodulin-dependent myosin light chain kinase, J. Biol. Chem. 254:12136.Google Scholar
  181. Walsh, M. P., Guilleux, J. C., and Demaille, J. G., 1981, Calcium-and cyclic AMP-dependent regulation of myofibrillar calmodulin-dependent myosin light chain kinases from cardiac and skeletal muscles, Adv. Cyclic Nucleotide Res. 14 (in press).Google Scholar
  182. Watterson, J. G., Köhler, L., and Schaub, M. C., 1979, Evidence for two distinct affinities in the binding of divalent metal ions to myosin, J. Biol. Chem. 254:6470.Google Scholar
  183. Whalen, R. G., Butler-Browne, G. S., and Gros, F., 1976, Protein synthesis and actin heterogeneity in calf muscle cells in culture, Proc. Natl. Acad. Sci. U.S.A. 73:2018.CrossRefGoogle Scholar
  184. Yamaguchi, M., Miyazawa, Y., and Sekine, T., 1970, Preparation and properties of smooth muscle myosin from horse esophagus, Biochim. Biophys. Acta 21b6:411.Google Scholar
  185. Yazawa, M., and Yagi, K., 1978, Purification of modulator-deficient myosin light-chain kinase by modulator protein-Sepharose affinity chromatography, J. Biochem. (Tokyo) 84:1259.Google Scholar
  186. Yazawa, M., Kuwayama, H., and Yagi, K., 1978, Modulator protein as a Ca2+-dependent activator of rabbit skeletal myosin light-chain kinase: Purification and characterization, J. Biochem. (Tokyo) 84:1253.Google Scholar
  187. Yeaman, S. J., Cohen, P., Watson, D. C., and Dixon, G. H., 1977, The substrate specificity of adenosine 3′: 5′-cyclic monophosphate-dependent protein kinase of rabbit skeletal muscle, Biochem. J. 162:411.Google Scholar
  188. Yerna, M.-J., Aksoy, M. O., Hartshorne, D. J., and Goldman, R. D., 1978, BHK 21 myosin: Isolation, biochemical characterization and intracellular localization, J. Cell Sci. 31:411.Google Scholar
  189. Yerna, M.-J., Dabrowska, R., Hartshorne, D. J., and Goldman, R. D., 1979, Calcium-sensitive regulation of actin-myosin interactions in baby hamster kidney (BHK-21) cells, Proc. Natl. Acad. Sci. U.S.A. 76:184.CrossRefGoogle Scholar
  190. Zechel, K., 1979, Localization of the charge differences in the actins of rabbit skeletal muscle and chicken gizzard by two-dimensional gel electrophoretic analysis of tryptic fragments, Hoppe-Seylers Z. Physiol. Chem. 360:777.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • David J. Hartshorne
    • 1
  1. 1.Muscle Biology Group, Department of Nutrition and Food ScienceUniversity of ArizonaTucsonUSA

Personalised recommendations