Water and Electrolyte Transport by Pig Chorioallantois

  • Fuller W. Bazer
  • M. H. Goldstein
  • D. H. Barron


Developing pig embryos enter the uterus on Day 3 of pregnancy (day of onset of estrus and mating = Day 0) and undergo hatching from the zona pellucida on about Day 7. By about Day 10.5 to 11.5 the blastocysts achieve a diameter of 5–12 mm and appear as fluid-filled spheres. It is assumed that these expanded spherical pig blastocysts actively accumulate water as described for those of rabbits (Biggers and Borland, 1976; see Benos and Biggers, this volume) and mice (DiZio and Tasca, 1974); however, direct evidence for the mechanism(s) of fluid accumulation in pig blastocysts is not available.


Amniotic Fluid Amniotic Membrane Ergot Alkaloid Chorioallantoic Membrane Allantoic Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, D. P., Andrews, D. A., Huggett, A. St. G., Nixon, D. A., and Widdas, W. F., 1955, The placental transfer of sugars in the sheep: Studies with radioactive sugar, J. Physiol. 129:352.Google Scholar
  2. Alexander, G., and Williams, D., 1966, Progesterone and placental development in sheep, J. Endocrinol. 34:241.CrossRefGoogle Scholar
  3. Alexander, G., and Williams, D., 1968, Hormonal control of amniotic and allantoic fluid volume in ovariectomized sheep, J. Endocrinol. 41:477.CrossRefGoogle Scholar
  4. Anderson, L. L., 1978, Growth, protein content and distribution of early pig embryos, Anat. Rec. 190:143.CrossRefGoogle Scholar
  5. Barcroft, J., and Barron, D. H., 1946, Blood pressure and pulse rate in the foetal sheep, J. Exp. Biol. 22:63.Google Scholar
  6. Battaglia, F. C., Prystowsky, H., Smisson, C., Hellegers, A. E., and Bruns, P., 1959, Fetal blood studies. XVI. On the changes in total osmotic pressure and sodium and potassium concentrations in amniotic fluid during the course of human gestation, Surg. Gynecol. Obstet. 109:509.Google Scholar
  7. Beck, J. S., and Currie, A. R., 1967, Immunofluorescence localization of growth hormone in the human pituitary gland and of a related antigen in the syncytiotrophoblast, Vitam. Horm. (N.Y.) 25:89.Google Scholar
  8. Biggers, J. D., and Borland, R. M., 1976, Physiological aspects of growth and development of the preimplantation mammalian embryo, Annu. Rev. Physiol. 48:95.CrossRefGoogle Scholar
  9. Bihler, I., and Crane, R. K., 1962, On the mechanism of intestinal absorption of sugars, Biochim. Biophys. Acta 59:78.CrossRefGoogle Scholar
  10. Bremer, J. L., 1916, The interrelations of the mesonephros, kidney and placenta in different classes animals, Am. J. Anat. 19:179.CrossRefGoogle Scholar
  11. Crawford, J. D., and McCance, R. A., 1960, Sodium transport by the chorioallantoic membrane of the pig, J. Physiol. 151:458.Google Scholar
  12. Davies, J., 1952, Correlated anatomical and histochemical studies on the mesonephros and placenta of the sheep, Am. J. Anat. 91:263.CrossRefGoogle Scholar
  13. Di Zio, S. M., and Tasca, R. J., 1974, Ion dependent, ouabain sensitive reexpansion of mouse blastocysts collapsed with cytochalasin B, Proc. Am. Soc. Cell Biol. 63:85 (abstract 85a).Google Scholar
  14. Falconer, I. R., and Rowe, J. M., 1975, Possible mechanism for action of prolactin on mammary cell sodium transport, Nature (London) 256:327.CrossRefGoogle Scholar
  15. Friesen, H., Suwa, S., and Pare, P., 1969, Synthesis and secretion of human placental lactogen and other proteins by placents, Recent Prog. Horm. Res. 25:161.Google Scholar
  16. Goldstein, M. H., 1977, Placental ion and water movement with emphasis on the porcine chorioallantois, M.S. thesis, University of Florida, Gainesville.Google Scholar
  17. Goldstein, M. H., Bazer, F. W., and Barron, D. H., 1980, Characterization of changes in volume, osmolarity and electrolyte composition of porcine fetal fluids during gestation, Biol. Reprod. 22:1168.Google Scholar
  18. Heap, R. B., Symons, A. F., and Watkins, J. C., 1971, On interaction between estradiol and progesterone in aqueous solutions and in a model membrane system, Biochim. Biophys. Acta 233:307.CrossRefGoogle Scholar
  19. Heap, R. B., Perry, J. S., and Challis, J. R. G., 1973, Hormonal maintenance in pregnancy, in: Handbook of Physiology, Section VII (R. O. Greep and E. B. Astwood, eds.), American Physiological Society, Washington, D.C., pp. 217–260.Google Scholar
  20. Hellman, L. M., Tricomi, V., and Gupta, O., 1957, Pressures in the human amniotic fluid and intervillous space, Am. J. Obstet. Gynecol. 74:1018.Google Scholar
  21. Holt, W. F., and Perks, A. M., 1975, The effect of prolactin on water movement through the isolated amniotic membrane of the guinea pig, Gen. Comp. Endocrinol. 26:153.CrossRefGoogle Scholar
  22. Horrobin, D. F., Burstyn, P. G., Lloyd, I. J., Durkin, N., Lipton, A., and Muiruri, K. L., 1971, Actions of prolactin on human renal functions, Lancet 2:352.CrossRefGoogle Scholar
  23. Josimovich, J. B., Weiss, G., and Hutchinson, D., 1974, Sources and disposition of pituitary prolactin in maternal circulation, amniotic fluid, fetus and placenta in the pregnant rhesus monkey, Endocrinology 98:1364.CrossRefGoogle Scholar
  24. Kann, G., and Denamur, R., 1974, Possible role of prolactin during the oestrous cycle and gestation in the ewe, J. Reprod. Fertil. 39:473.CrossRefGoogle Scholar
  25. Karg, H., and Schams, D., 1974, Prolactin release in cattle, J. Reprod. Fertil. 39:463.CrossRefGoogle Scholar
  26. Knight, J. W., Bazer, F. W., and Wallace, H. D., 1974, Effect of progesterone induced increase in uterine secretory activity on development of the porcine conceptus, J. Anim. Sci. 39:743.Google Scholar
  27. Knight, J. W., Bazer, F. W., Thatcher, W. W., Franke, D. E., and Wallace, H. D., 1977, Conceptus development in intact and unilaterally hysterectomized-ovariectomized gilts: Interrelations among hormonal status, placental development, fetal fluids and fetal growth, J. Anim. Sci. 44:620.Google Scholar
  28. Kraeling, R. R., Rampacek, G. B., Cox, N. M., and Kiser, T. E., 1979, Suppression of prolactin secretion in lactating sows with bromocryptine (CB-154), Proc. Am. Soc. Anim. Sci. Tucson, p. 311.Google Scholar
  29. Lehmeyer, J. E., and MacLeod, R. M., 1972, Suppression of pituitary tumor function by alkaloids, Proc. Am. Assoc. Cancer Res. 13:90.Google Scholar
  30. Lloyd, H. M., Meares, J. D., and Jacobi, J., 1975, Effects of estrogen and bromocryptine on in vivo secretion and mitosis in prolactin cells, Nature (London) 225:497.CrossRefGoogle Scholar
  31. Lockett, M. F., and Nail, B., 1965, A comparison of the renal actions of growth and lactogenic hormones in rats, J. Physiol. 181:192.Google Scholar
  32. McCance, R. A., and Dickerson, J. W. T., 1957, The composition and origin of the fetal fluids of the pig, J. Embryol. Exp. Morphol. 5:43.Google Scholar
  33. McCance, R. A., and Widdowson, E. M., 1953, Renal function before birth, Proc. R. Soc. London Ser. B 141:488.CrossRefGoogle Scholar
  34. McCarthy, E. F., 1946, The osmotic pressure of human fetal and maternal sera, J. Physiol. 104:433.Google Scholar
  35. McGovern, P. T., 1976, Dose of progesterone and allantoic fluid volume in conceptuses in ovariectomized goats, Am. J. Physiol. 181:1.Google Scholar
  36. Mainoya, J. R., 1972, Effects of prolactin on absorption of water and ions by the rat intestine, Am. Zool. 12:112 (abstract).Google Scholar
  37. Mainoya, J. R., 1975, Further studies on the action of prolactin on fluid and ion absorption by the rat jejunum, Endocrinology 96:1190.Google Scholar
  38. Mainoya, J. R., Bern, H. A., and Regan, J. W., 1974, Influence of ovine prolactin on transport of fluid and sodium chloride by the mammalian intestine and gall-bladder, J. Endocrinol. 63:311.CrossRefGoogle Scholar
  39. Manku, M. S., Mtabaji, J. P., and Horrobin, D. F., 1975, Effect of cortisol, prolactin and ADH on the amniotic membrane, Nature (London) 258:78.CrossRefGoogle Scholar
  40. Meites, J., Lu, K. H., Wuttke, W., Welsch, C. W., Nagasaw, H., and Quadri, S. K., 1972, Recent studies on functions and control of prolactin secretion in rats, Recent Prog. Horm. Res. 28:471.Google Scholar
  41. Mellor, D. J., 1970, Distribution of ions and electrical potential difference between mother and fetus at different gestational ages in goats and sheep, J. Physiol. 207:133.Google Scholar
  42. Meschia, G., 1955, Colloidal osmotic pressures of fetal and maternal plasmas of sheep and goats, Am. J. Physiol 181:1.Google Scholar
  43. Meschia, G., Battaglia, F. C., and Barron, D. H., 1957, A comparison of the freezing points of fetal and maternal plasmas of sheep and goats, Q. J. Exp. Physiol. 42:163.Google Scholar
  44. Meshia, G., Wolkoff, A. S., and Barron, D. H., 1958, Difference in electric potential across the placenta of goats, Proc. Natl. Acad. Sci. USA 44:483.CrossRefGoogle Scholar
  45. Miller, R. K., and Berndt, W. D., 1974, Characterization of neutral amino acid accumulation by human term placental slices, Am. J. Physiol. 227:1236.Google Scholar
  46. Moriarity, C. M., and Hogben, A. M., 1970, Active Na+ and Cl transport by the chick chorioallantoic membrane, Biochim. Biophys. Acta 219:463.CrossRefGoogle Scholar
  47. Niall, H. D., Hogan, M. L., Saver, R., Rosenblum, I. Y., and Greenwood, F. C., 1971, Pituitary and placental lactogenic and growth hormones: Evolution from a primordial gene reduplication, Proc. Natl. Acad. Sci. USA 68:866.CrossRefGoogle Scholar
  48. Nicoll, C. S., Yaron Z., Nutt, N., and Daniels, E., 1970, Effects of ergotamine tartrate on prolactin and growth hormone secretion by rat adenohypophysis in vitro, Biol. Reprod. 5:59.Google Scholar
  49. Prystowsky, H., 1958, Fetal blood studies. VIII. Some observations on the transient fetal bradycardia accompanying uterine contractions in the human, Bull. Johns Hopkins Hosp. 102:1.Google Scholar
  50. Ramsey, D. H., and Bern, H. A., 1972, Stimulation by ovine prolactin of fluid transfer in everted sacs of rat small intestine, J. Endocrinol. 53:453.CrossRefGoogle Scholar
  51. Ramsey, E. M., Corner, G. W., Jr., Long, W. N., Jr., and Stran, H. M., 1959, Studies of amniotic fluid and intervillous space pressures in the rhesus monkey, Am. J. Obstet. Gynecol. 77:1016.Google Scholar
  52. Reiser, S., and Christiansen, P. A., 1972, Relative effectiveness of extracellular sodium in supporting leucine uptake by isolated intestinal epithelial cells, Proc. Soc. Exp. Biol. Med. 140:362.Google Scholar
  53. Reynolds, S. R. M., 1960, Regulation of the fetal circulation, Clin. Obstet. Gynecol. 3:834.CrossRefGoogle Scholar
  54. Riddle, O., 1963, Prolactin in vertebrate function and organization, J. Natl. Cancer Inst. 31:1039.Google Scholar
  55. Robertson, H. A., and King, G. J., 1974, Plasma concentrations of progesterone, oestrone, oestradiol 17-β and of oestrone sulphate in the pig at implantation during pregnancy and at parturition, J. Reprod. Fertil. 40:133.CrossRefGoogle Scholar
  56. Schultz, S. F., and Curran, P. F., 1970, Coupled transport of sodium and organic solutes, Annu. Rev. Physiol. 36:51.CrossRefGoogle Scholar
  57. Schultz, S. F., and Zalusky, R., 1964, Ion transport in isolated rabbit ileum. I. Short-circuit current and Na fluxes, J. Gen. Physiol. 47:567.CrossRefGoogle Scholar
  58. Skou, J. C., 1965, Enzymatic basis for active transport of Na+ and K+ across cell membranes, Phvsiol. Rev. 45:596.Google Scholar
  59. Soloff, M. S., 1975. Uterine receptor for oxytocin: Effects of estrogen, Biochem. Biophys. Res. Commun. 65:205.CrossRefGoogle Scholar
  60. Stanley, J. E., and Fleming, W. R., 1967, Effect of prolactin and ACTH on the serum and urine sodium levels of Fundulus kansac, Comp. Biochem. Physiol. 20:199.CrossRefGoogle Scholar
  61. Stewart, M. E., and Terepka, A. R., 1969, Transport functions of the chick chorioallantoic membrane, Exp. Cell Res. 58:93.CrossRefGoogle Scholar
  62. Tuft, P. H., and Boving, B. G., 1970, The forces involved in water uptake by the rabbit blastocyst, J. Exp. Zool. 174:165.CrossRefGoogle Scholar
  63. Ussing, H. H., and Zerahn, K., 1951, Active transport of sodium as the source of electric current in the short-circuited isolated frog skin, Acta Physiol. Scand. 23:110CrossRefGoogle Scholar
  64. Utida, S., Hirano, T., Oide, H., Ando, M., Johnson, D. W., and Bern, H. A., 1972, Hormonal control of the intestine and urinary bladder in teleost osmoregulation, Gen. Comp. Endocrinol Suppl. 3:317.CrossRefGoogle Scholar
  65. Watlingtin, C. O., Smith, T. C., and Huf, E. G., 1970, Direct electrical currents in metabolizing epithelial membranes, J. Physiol. Biochem. 3:49.Google Scholar
  66. Wheeler, K. P., Inui, Y., Hollenberg, P. E., Eavenson, E., and Christensen, H. N., 1965, Relation of amino acid transport to sodium ion concentration, Biochim. Biophys. Acta 109:620.CrossRefGoogle Scholar
  67. Wislocki, G. B., 1935, On the volume of fetal fluids in sow and cat, Anat. Rec. 63:183.CrossRefGoogle Scholar
  68. Wuttke, W., Cassell, E., and Meites, J., 1971, Effects of ergocornine on serum prolactin and LH, and on hypothalamic content of PIR and LRF, Endocrinology 88:737.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Fuller W. Bazer
    • 1
  • M. H. Goldstein
    • 2
  • D. H. Barron
    • 3
  1. 1.Department of Animal ScienceUniversity of FloridaGainesvilleUSA
  2. 2.Department of PhysiologyUniversity of FloridaGainesvilleUSA
  3. 3.Department of Obstetrics and GynecologyUniversity of FloridaGainesvilleUSA

Personalised recommendations