Bacterial Attachment to Plant Cell Walls

  • Marianne H. Whatley
  • Luis Sequeira
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 15)


A plant encounters a large number of potential pathogens in its environment, but, because of the highly specific nature of most host-pathogen interactions, rarely does successful infection occur. This specificity apparently is dependent on the initial recognition between the plant and pathogen, which may be mediated by the interaction of complementary macromolecules on the surfaces of both organisms. Recognition can facilitate growth of both organisms, as is the case of symbiotic relationships. Recognition also could function as a defense mechanism. A plant can recognize and immobilize a potential pathogen, thus preventing its multiplication. Though the hypothesis of recognition as a specific defense mechanism is an attractive explanation of various resistance phenomena, it has not been demonstrated unequivocally. Most of the work in this area involves symbiotic or plant pathogenic bacteria. This paper will examine the evidence for attachment of bacteria to plant cell walls and then proceed to a discussion of the nature of the bacterial and plant components that may be involved.


Cell Wall Plant Cell Wall Hypersensitive Response Agrobacterium Tumefaciens Tumor Induction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stall, R. E. and A. A. Cook. 1979. Evidence that bacterial contact with the plant cell is necessary for the hypersensitive reaction but not the susceptible reaction. Physiol. Plant Pathol. 14:77–84.CrossRefGoogle Scholar
  2. 2.
    Lippincott, B. B. and J. A. Lippincott. 1969. Bacterial attachment to a specific wound site as an essential stage in tumor initiation by Agrobacterium tumefaciens. J. Bacteriol. 97:620–628.PubMedGoogle Scholar
  3. 3.
    Schilperoort, R. A. 1969. Investigations on plant tumors. Crown gall: On the biochemistry of tumor-induction by Agrobacterium tumefaciens. Thesis, University of Leiden.Google Scholar
  4. 4.
    Beiderbeck, R. 1973. Bacterial cell wall and tumor induction by Agrobacterium tumefaciens. Z. Naturforschung. Part C. 28:19–201.Google Scholar
  5. 5.
    Whatley, M. H. 1977. Studies on the adherence step exxential for tumor induction by Agrobacterium. Thesis, Northwestern University, Evanston, IL.Google Scholar
  6. 6.
    Glogowski, W. and A. G. Galsky. 1978. Agrobacterium tumefaciens site attachment as necessary prerequisite for crown gall tumor formation on potato discs. Plant Physiol. 61:1031–1033.PubMedCrossRefGoogle Scholar
  7. 7.
    Bogers, R. J. 1972. On the interaction of A. tumefaciens with cells of Kalanchoe daigremontiana. In Proc. 3rd Int. Conf. Plant Pathogenic Bacteria, (H. P. Maas Geesteranus, ed.). Wageningen, the Netherlands: Cent. Agri. Publ. Doc. pp. 239–250.Google Scholar
  8. 8.
    Matthysse, A. G. and P. M. Wyman. 1978. Attachment of Agrobacterium tumefaciens to tissue culture cells. Plant Physiol. 61S:72.Google Scholar
  9. 9.
    Ohyama, K., L. E. Pelcher, A. Schaefer, and L. C. Fowke. 1979. In vitro binding of Agrobacterium tumefaciens to plant cells from suspension culture. Plant Physiol. 63:382–387.PubMedCrossRefGoogle Scholar
  10. 10.
    Chilton, M.-D., M. H. Drummond, D. J. Merlo, D. Sciaky, A. L. Montoya, M. P. Gordon and E. W. Nester. 1977. Stable incorporation of plasmid DNA into higher plant cells: The molecular basis of crown gall tumorigenesis. Cell 11:263–271.PubMedCrossRefGoogle Scholar
  11. 11.
    Drummond, M. H., M. P. Gordon, E. W. Nester, and M.-D. Chilton. 1977. Foreign DNA of bacterial plasmid origin is transcribed in crown gall tumors. Nature 269:535–536.CrossRefGoogle Scholar
  12. 12.
    Spiess, L. D., B. B. Lippincott, and J. A. Lippincott. 1971. Development and gametophore induction in the moss Pylaisiella selwynii as influenced by Agrobacterium tumefaciens. Amer. J. Bot. 58:726–731.CrossRefGoogle Scholar
  13. 13.
    Spiess, L. D., B. B. Lippincott, and J. A. Lippincott. 1976. The requirement of physical contact for moss gametophore induction by Agrobacterium tumefaciens. Amer. J. Bot. 63:324–328.CrossRefGoogle Scholar
  14. 14.
    Spiess, L. D., J. C. Turner, P. G. Mahlberg, B. B. Lippincott, and J. A. Lippincott. 1977. Adherence of agrobactería to moss protonema and gametophores viewed by scanning electron microscopy. Amer. J. Bot. 64:1200–1208.CrossRefGoogle Scholar
  15. 15.
    Chen, A.-P. T. and D. A. Phillips. 1976. Attachment of Rhizobium to legume roots as the basis for specific interactions. Plant Physiol. 38:83–88.CrossRefGoogle Scholar
  16. 16.
    Napoli, C. A., F. B. Dazzo, and D. H. Hubbell. 1975. Production of cellulose microfibrils by Rhizobium. Appl. Microbiol. 30:123–131.Google Scholar
  17. 17.
    Dazzo, F. B., C. A7-Napoli, and D. H. Hubbell. 1976. Adsorption of bacteria to roots as related to host specificity in the Rhizobium-clover symbiosis. Appl. Environ. Microbiol. 32:166–171.PubMedGoogle Scholar
  18. 18.
    Klement, Z. 1963. Method for the rapid detection of pathogenicity of phytopathogenic pseudomonads. Nature 199:299–300.PubMedCrossRefGoogle Scholar
  19. 19.
    Sequeira, L., G. Gaard, and G. A. de Zoeten. 1977. Attachment of bacteria to host cell walls: Its relation to mechanisms of induced resistance. Physiol. Plant Pathol. 10:43–50.CrossRefGoogle Scholar
  20. 20.
    Goodman, R. N., P. Y. Huang, and J. A. White. 1976. Ultrastructural evidence for immobilization of an incompatible bacterium, Pseudomonas pisi, in tobacco leaf tissue. Phytopathology 66:754–764.CrossRefGoogle Scholar
  21. 21.
    Sing, V. O., and M. N. Schroth. 1977. Bacteria-plant cell surface interactions: Active immobilization of saprophytic bacteria in plant leaves. Science 197:759–761.PubMedCrossRefGoogle Scholar
  22. 22.
    Hildebrand, D. C., M.-C. Alosí, and M. N. Schroth. 1980. Physical entrapment of pseudomonads in bean leaves by films formed at air-water interfaces. Phytopathology 70:98–109.CrossRefGoogle Scholar
  23. 23.
    Daub, M. E. and D. J. Hagedorn. 1980. Growth kinetics and interactions of Pseudomonas syringae with susceptible and resistant bean tissues. Phytopathology 70:429–436.CrossRefGoogle Scholar
  24. 24.
    Sigee, D. C., and H. A. S. Epton. 1975. Ultrastructure of Pseudomonas phaseolicola in resistant and susceptible leaves of French bean. Physiol. Plant Pathol. 6:29–34.Google Scholar
  25. 25.
    Gaard, G. and G. A. de Zoeten. 1979. Plant virus uncoating as a result of virus-cell wall interactions. Virology 96:21–31.PubMedCrossRefGoogle Scholar
  26. 26.
    Huang, J. S. and G. C. Van Dyke. 1978. Interaction of tobacco callus tissue with Pseudomonas tabaci, P. pisi, and P. fluorescens. Physiol. Plant Pathol. 13:65–72.CrossRefGoogle Scholar
  27. 27.
    Politis, D. J. and R. N. Goodman. 1978. Localized cell wall appositions: Incompatibility response of tobacco leaf cells to Pseudomonas pisi. Phytopathology 68:309–316.CrossRefGoogle Scholar
  28. 28.
    Cason, E. T., Jr., P. E. Richardson, M. K. Essenberg, L. A. Brinkerhoff, W. M. Johnson, and R. J. Venere. 1978. Ultrastructural cell wall alterations in immune cotton leaves inoculated with Xanthomonas malvacearum. Phytopathology 68:1015–1021.CrossRefGoogle Scholar
  29. 29.
    Fett, W. F. 1979. Occurrence and physiological properties of Pseudomonas glycinea and Xanthomonas phaseoli var. sojensis in Wisconsin and presence of a bacterial agglutinating factor in soybean. Thesis, University of Wisconsin, Madison, WI.Google Scholar
  30. 30.
    Cook, A. A. and R. E. Stall. 1977. Effects of water-soaking on response to Xanthomonas vesicatoria in pepper leaves. Phytopathology 67:1101–1103.CrossRefGoogle Scholar
  31. 31.
    Victoria, J. I. 1977. Resistance in corn (Zea mays L.) to bacterial stalk rot in relation to virulence of strains of Erwinia chrysanthemi. Thesis, University of Wisconsin, Madison, WI.Google Scholar
  32. 32.
    Whatley, M. H., J. S. Bodwin, B. B. Lippincott, and J. A. Lippincott. 1976. Role for Agrobacterium cell envelope lipopolysaccharide in infection site attachment. Infect. Immun. 13:1080–1083.PubMedGoogle Scholar
  33. 33.
    Whatley, M. H., J. B. Margot, J. Schell, B. B. Lippincott, and J. A. Lippincott. 1978. Plasmid and chromosomal determination of Agrobacterium adherence specificity. J. Gen. Microbiol. 107:395–398.Google Scholar
  34. 34.
    Whatley, M. H. and L. D. Spiess. 1977. Role of bacterial lipopolysaccharide in attachment of Agro-bacterium to moss. Plant Physiol. 60:765–766.PubMedCrossRefGoogle Scholar
  35. 35.
    Wolpert, J. S. and P. Albersheim. 1976. Hostsymbiont interactions. I. The lectins of legumes interact specifically with the 0-antigen containing lipopolysaccharide of their symbiont rhizobia. Biochem. Biophys. Res. Comm. 70:729–737.PubMedCrossRefGoogle Scholar
  36. 36.
    Maier, R. J. and W. J. Brill. 1978. Involvement of Rhizobium japonicum 0-antigen in soybean nodulation. J. Bacteriol. 133:1295–1299.PubMedGoogle Scholar
  37. 37.
    Kato, G., Y. Maruyama, and M. Nakamura. 1979. Role of lectins and lipopolysaccharide in the recognition process of specific legume-Rhizobium symbiosis. Agric. Biol. Chem. 43:1085–1092.CrossRefGoogle Scholar
  38. 38.
    Carlson, R. W., R. E7-Sanders, C. Napoli, and P. Albersheim. 1978. Host-symbiont interactions. III. Purification and partial characterization of Rhizobium lipopolysaccharides. Plant Physiol. 62:912–917.PubMedCrossRefGoogle Scholar
  39. 39.
    Calvert, H. E., M. Lalonde, T. V. Bhuvaneswari, and W. D. Bauer. 1978. Role of lectins in plant-microorganism interactions. IV. Ultrastructural localization of soybean lectin binding sites on Rhizobium japonicum. Can. J. Microbiol. 24:785–793.PubMedCrossRefGoogle Scholar
  40. 40.
    Bhuvaneswari, T. V., S. G. Pueppke, and W. D. Bauer. 1977. Role of lectins in plant-microorganism interactions. I. Binding of soybean lectins to rhizobia. Plant Physiol. 60:486–491.PubMedCrossRefGoogle Scholar
  41. 41.
    Mort, A. and W. D. Bauer. 1978. The chemical basis of lectin binding to Rhizobium japonicum. Plant Physiol. 61S:59.Google Scholar
  42. 42.
    Sanders, R. E., R. W. Carlson, and P. Albersheim. 1978. A Rhizobium mutant incapable of nodulation and normal polysaccharide secretion. Nature 271:240–242.CrossRefGoogle Scholar
  43. 43.
    Dazzo, F. B. and D. H. Hubbell. 1975. Cross-reactive antigens and lectin as determinants of symbiotic specificity in the Rhizobium-clover association. Appl. Microbiol. 30:1017–1033.PubMedGoogle Scholar
  44. 44.
    Dazzo, F. B. and W. J. Brill. 1979. Bacterial polysaccharide which binds Rhizobium trifolii to clover root hairs. J. Bacteriol. 137:1362–1373.PubMedGoogle Scholar
  45. 45.
    Planqué, K. and W. J. Kijne. 1977. Binding of pea lectins to a glycan type polysaccharide in the cell walls of Rhizobium leguminosarum. FEBS Lett. 73:64–66.PubMedCrossRefGoogle Scholar
  46. 46.
    Planqué, K., J. J. Nierop, and A. Burgers. 1979. The lipopolysaccharide of free-living and bacteroid forms of Rhizobium leguminosarum. J. Gen. Microbiol. 110:151–159.Google Scholar
  47. 47.
    Kamberger, W. 1979. Role of cell surface polysaccharides in the Rhizobium-pea symbiosis. FEMS Microbiol. Lett. 6:361–365.CrossRefGoogle Scholar
  48. 48.
    Bhagwat, A. A. and J. Thomas. 1980. Dual binding sites for peanut lectin on Rhizobia. J. Gen. Microbiol. 117:119–125.Google Scholar
  49. 49.
    Sequeira, L. and T. L. Graham. 1977. Agglutination of avirulent strains of Pseudomonas solanacearum by potato lectin. Physiol. Plant Pathol. 11:43–54.CrossRefGoogle Scholar
  50. 50.
    Whatley, M. H., N. Hunter, M. A. Cantrell, C. A. Hendrick, K. Keegstra, and L. Sequeira. 1980. Specific changes in Pseudomonas lipopolysaccharide associated with induction of the hypersensitive response in tobacco. Plant Physiol. 65:557–559.PubMedCrossRefGoogle Scholar
  51. 51.
    Hendrick, C. A., M. H. Whatley, N. Hunter, M. A. Cantrell, and L. Sequeira. 1979. The hypersensitive response in tobacco: A phage capable of differentiating HR and non-HR-inducing Pseudomonas solanacearum. Plant Physiol. 63S:134.Google Scholar
  52. 52.
    Lovrekovich, L. and G. L. Farkas. 1965. Induced protection against wildfire disease in tobacco leaves treated with heat-killed bacteria. Nature (London) 205:823–824.CrossRefGoogle Scholar
  53. 53.
    Lozano, J. C. and L. Sequeira. 1970. Prevention of the hypersensitive reaction in tobacco leaves by heat-killed bacterial cells. Phytopathology 60:875–879.CrossRefGoogle Scholar
  54. 54.
    Graham, T. L., L. Sequeira, and T.-S. R. Huang. 1977. Bacterial lipopolysaccharides as inducers of disease resistance in tobacco. Appl. Environ. Microbiol. 34:424–432.PubMedGoogle Scholar
  55. 55.
    Mazzuchí, U. and P. Pupillo. 1976. Prevention of confluent hypersensitive necrosis in tobacco by a bacterial protein-lipopolysaccharíde complex. Physiol. Plant Pathol. 9:101–112.CrossRefGoogle Scholar
  56. 56.
    Mazzuchí, U., C. Bazzi, and P. Pupillo. 1979. The inhibition of susceptible and hypersensitive reactions by protein-lipopolysaccharide complexes from phytopathogenic pseudomonads: Relationship to polysaccharide antigenic determinants. Physiol. Plant Pathol. 14:19–30.CrossRefGoogle Scholar
  57. 57.
    Morris, E. R., D. A. Rees, G. Young, M. D. Walkinshaw, and A. Darke. 1977. Order-disorder transition for a bacterial polysaccharide in solution. A role for polysaccharide conformation in recognition between Xanthomonas pathogen and its host plant. J. Molec. Biol. 110:1–16.PubMedCrossRefGoogle Scholar
  58. 58.
    Gmeiner, J. and S. Schlecht. 1979. Molecular organization of the outer membrane of Salmonella typhimurium. Eur. J. Biochem. 93:609–620.PubMedCrossRefGoogle Scholar
  59. 59.
    Bruegger, B. B. and N. T. Keen. 1979. Specific elicitors of glyceollin accumulation in the Pseudomonas glycinea-soybean host-parasite system. Physiol. Plant Pathol. 15:43–51.CrossRefGoogle Scholar
  60. 60.
    Bradshaw-Rouse, J., L. Sequeira, A. Kelman, and D. Coplin. 1980. Extracellular polysaccharide and virulence of Erwinia stewartii in relation to agglutination by a corn lectin. Phytopathology 71: (In press).Google Scholar
  61. 61.
    Moorhouse, R., W. T. Winter, and S. Arnott. 1977. Conformation and molecular organization in fibers of the capsular polysaccharide from E. coli M41 mutant. J. Molec. Biol. 109:373–391.PubMedCrossRefGoogle Scholar
  62. 62.
    Lippincott, J. A. and B. B. Lippincott. 1977. Nature and specificity of the bacterium-host attachment in Agrobacterium infection. In Cell Wall Biochemistry Related to Specificity in Host-Plant Pathogen Interactions, (B. Solheim and J. Raa, eds.). Norway Uníversítetsforlaget, Oslo. pp. 439–451.Google Scholar
  63. 63.
    Lippincott, B. B., M. H. Whatley, and J. A. Lippincott. 1977. Tumor induction by Agrobacterium involves attachment to a site on the host plant cell wall. Plant Physiol. 59:388–390.PubMedCrossRefGoogle Scholar
  64. 64.
    Lippincott, J. A7-and B. B. Lippincott. 1978. Cell walls of crown-gall tumors and embryonic plant tissues lack Agrobacterium adherence sites. Science 199:1075–1078.PubMedCrossRefGoogle Scholar
  65. 65.
    Sequeíra, L. 1978. Lectins and their role in host-pathogen specificity. Annu. Rev. Phytopathol. 16:453–481.PubMedCrossRefGoogle Scholar
  66. 66.
    Dazzo, F. B. 1980. Adsorption of microorganisms to roots and other plant surfaces. In Adsorption of Microorganisms to Surfaces, (G. Bitton and K. C. Marshall, eds.). John Wiley and Sons, Inc. pp. 253–316.Google Scholar
  67. 67.
    Hamblin, J. and S. P. Kent. 1973. Possible role of phytohaemagglutinin in Phaseolus vulgaris L. Nature 245:28–30.CrossRefGoogle Scholar
  68. 68.
    Bohlool, B. B. and E. L. Schmidt. 1974. Lectíns: A possible basis for specificity in the Rhizobium-legume root nodule symbiosis. Science 185:269–271.PubMedCrossRefGoogle Scholar
  69. 69.
    Bohlool, B. B. and E. L. Schmidt. 1976. Immunofluorescent polar tips of Rhizobium japonícum: Possible site of attachment of lectin binding. J. Bacteriol. 125:118–194.Google Scholar
  70. 70.
    Bhuvaneswari, T. V. and W. D. Bauer. 1978. Role of lectíns in plant-microorganism interactions. III. The influence of rhizosphere/rhizoplane culture conditions on the soybean lectin-binding properties of rhízobia. Plant Physiol. 62:71–74.PubMedCrossRefGoogle Scholar
  71. 71.
    Mort, A. J., M. E. Slodki, R. D. Plattner, and W. D. Bauer. 1979. The initiation of infections in soybean by Rhizobium. 4. Molecular structure of biologically active R. japonicum polysaccharides. Plant Physiol. 63S:135.Google Scholar
  72. 72.
    Pueppke, S. G., W. D. Bauer, K. Keegstra, and A. L. Ferguson. 1978. Role of lectins in plant-microorganism interactions. II. Distribution of soybean lectin in tissues of Glycine max (L.) Merr. Plant Physiol. 61:779–784.PubMedCrossRefGoogle Scholar
  73. 73.
    Su, L.-C., S. G. Pueppke, and H. P. Friedman. 1980. Lectins and the soybean-Rhizobium symbiosis. I. Immunological investigations of soybean lines, the seeds of which have been reported to lack the 120,000 dalton soybean lectín. Bíochem. Biophys. Acta 629:292–304.PubMedCrossRefGoogle Scholar
  74. 74.
    Dazzo, F. B. and W. J. Brill. 1977. Receptor site on clover and alfalfa roots for Rhizobium. Appl. Environ. Microbiol. 33:132–136.PubMedGoogle Scholar
  75. 75.
    Dazzo, F. B., W. E. Yanke, and W. J. Brill. 1978. Trifoliin: A Rhizobium recognition protein from white clover. Biochim. Biophys. Acta 529:276–286.CrossRefGoogle Scholar
  76. 76.
    Duvick, J. P., L. Sequeira, and T. L. Graham. 1979. Binding of Pseudomonas solanacearum suface polysaccharides to plant lectín in vitro. Plant Physiol. 63S:134.Google Scholar
  77. 77.
    Leach, J., M. A. Cantrell, and L. Sequeíra. 1978. Localization of potato lectin by means of fluorescent antibody techniques. Phytopathol. News 12:197.Google Scholar
  78. 78.
    Dea, I. C. M., E. R. Morris, D. A. Rees, E. J. Welsh, H. A. Barnes, and J. Price. 1977. Associations of like and unlike polysaccharides: Mechanism and specificity in galactomannans, interacting bacterial polysaccharides, and related systems. Carbohydr. Res. 57:249–272.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Marianne H. Whatley
    • 1
  • Luis Sequeira
    • 1
  1. 1.Department of Plant PathologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations