Molecular Aspects of Recognition and Response in the Pollen-Stigma Interaction

  • Adrienne E. Clarke
  • Paul A. Gleeson
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 15)


Although fertilization in plants is fundamental to life, our understanding of the process at the molecular level is restricted to a few facets of a few systems; predictably, the best information has come from the simplest systems. For example, the first event of fertilization in some algal species is direct membrane contact of gametes which do not have cell walls, and the recognition of compatible gametes is apparently mediated by essentially the same sort of reaction which occurs during the mutual recognition of animal cells. The cellular events leading to fertilization in higher plants are more complex: in most cases not only are there a series of interactions between the haploid pollen housing the male gametes, and the diploid female tissues of the pistil, prior to fertilization, but the interactions involve contact of cells which have walls overlaying the plasma membrane. For this reason, we will consider the possible mechanisms for cell-cell recognition between plant cells. We will then outline the biology of fertilization in flowering plants with particular reference to the stages where cell-cell recognition interactions are evident.


Pollen Tube Pollen Tube Growth Sweet Cherry Aniline Blue Stigma Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clarke, A. E. and R. B. Knox. 1978. Cell recognition in flowering plants. Q. Rev. Biol. 53:3–28.CrossRefGoogle Scholar
  2. 2.
    Frazier, W. and L. Glaser. 1979. Surface components and cell recognition. Annu. Rev. Biochem. 48:491–523.PubMedCrossRefGoogle Scholar
  3. 3.
    Sharon, N. 1979. Possible functions of lectins in micro-organisms, plants and animals. In Glyconjugate Research. 1. (J. D. Gregory and R. W. Jeanloz, eds.). Academic Press, New York. pp. 458–491.Google Scholar
  4. 4.
    Williams, A. F. 1978. Membrane glycoproteins in recognition. Biochem. Soc. Trans. 6:490–494.PubMedGoogle Scholar
  5. 5.
    Barondes, S. H. and S. D. Rosen. 1976. Cell surface carbohydrate-binding proteins: Role in cell recognition. In Neuronal Recognition. (S. Barondes, ed.). Plenum Press, New York. pp. 331–356.CrossRefGoogle Scholar
  6. 6.
    Goldstein, I. J., R. C. Hughes, M. Monsigny, T. Osawa and N. Sharon. 1980. What should be called a lectin. Nature 285:66.CrossRefGoogle Scholar
  7. 7.
    Greaves, M. F. 1975. Cellular Recognition. Outline Studies in Biology. Chapman and Hall, London.Google Scholar
  8. 8.
    Goldstein, I. J. and C. E. Hayes. 1978. The lectins: carbohydrate-binding protein of plants and animals. Adv. Carbohydr. Chem. Biochem. 35:128–340.Google Scholar
  9. 9.
    Burke, D., L. Mendonca-Previato and C. E. Ballou. 1980. Cell-cell recognition in yeast. Purification of Hansenula wingei 21-cell sexual agglutination factor and comparison of the factors from three genera. Proc. Natl. Acad. Sci. USA 77:318–322.PubMedCrossRefGoogle Scholar
  10. 10.
    Hughes, R. C7 1979. Cell surface carbohydrates in relation to receptor activity. In Glycoconjugate Research. Vol. 2. (J. D. Gregory and R. W. Jeanloz, eds.). Academic Press, New York. pp. 986–1003.Google Scholar
  11. 11.
    Weise, L. 1974. Nature of sex-specific glycoprotein agglutinins in Chlamydomonas. Ann. New York Acad. Sci. 234:283–295.CrossRefGoogle Scholar
  12. 12.
    Bolwell, G. P., J. A. Callow, M. E. Callow and L. V. Evans. 1979. Fertilization in brown algae. II. Evidence for lectin-sensitive complementary receptors involved in gamete recognition in Fucus serratus. J. Cell Sci. 36:19–30.PubMedGoogle Scholar
  13. 13.
    Morris, E. R., D. A. Rees, G. Young, M. D. Walinshaw and A. Darke. 1977. Order-disorder transition for a bacterial polysaccharide in solution. A role for polysaccharide conformation in recognition between Xanthomonas pathogen and its plant host. J. Mol. Biol. 110:1–16.PubMedCrossRefGoogle Scholar
  14. 14.
    McNeil, M., A. G. Darvill and Albersheim. 1979. The structural polymers of the primary cell walls of dicots. Prog. Chem. Org. Nat. Prod. 37:191–249.Google Scholar
  15. 15.
    Carpita, N., D. Subularse, D. Monteginos and D. P. Delmer. 1979. Determination of the pore size of cell walls of living plant cells. Science 205:1144–1147.PubMedCrossRefGoogle Scholar
  16. 16.
    Albersheim, P. and B. S. Valent. 1978. Host-pathogen interaction in plants. J. Cell Biol. 78:627–643.PubMedCrossRefGoogle Scholar
  17. 17.
    Peters, B. M., D. H. Cribbs and D. A. Stelzig. 1978. Agglutination of plant protoplasts by fungal cell wall glucans. Science 201:364–365.PubMedCrossRefGoogle Scholar
  18. 18.
    Clarke, A. E. and R. B. Knox. 1980. Plants and Immunity. Dev. Comp. Immunol. 3:571–589.CrossRefGoogle Scholar
  19. 19.
    Albersheim, P. and A. J. Anderson-Prouty. 1975. Carbohydrates, proteins, cell surfaces and biochemistry of pathogens. Annu. Rev. Plant Physiol. 26:31–52.CrossRefGoogle Scholar
  20. 20.
    Liener, I. E. 1976. Phytohemagglutinins (Phytolectins). Annu. Rev. Plant Physiol. 27:291–319.CrossRefGoogle Scholar
  21. 21.
    Callow, J. A. 1977. Recognition, resistance and the role of plant lectins in host-parasite interactions. Adv. Bot. Res. 4:1–49.CrossRefGoogle Scholar
  22. 22.
    Sequeira, L. 1978. Lectins and their role in host pathogen specificity. Annu. Rev. Phytopathol. 16:435–81.CrossRefGoogle Scholar
  23. 23.
    Schmidt, E. L. 1979. Inititation of plant root-microbe interactions. Annu. Rev. Microbiol. 33:355–376.CrossRefGoogle Scholar
  24. 24.
    Gunning, B. E. S. and A. W. Robards. 1976. Plasmodesmata: Current knowledge and outstanding problems. In Intercellular Communication in Plants: Studies on plasmodesmata. (B. E. S. Gunning and A. W. Robards, eds.). Springer-Verlag, New York. pp. 297–311.CrossRefGoogle Scholar
  25. 25.
    Dickinson, H. G. and D. Lewis. 1973. Cytochemical and ultrastructural differences between intraspecific compatible and incompatible pollinations in Raphanus. Proc. Roy. Soc. (Lond.) Ser.B. 183:21–38.CrossRefGoogle Scholar
  26. 26.
    Knox, R. B. 1973. Pollen-wall proteins: pollen-stigma interactions in ragweed and Cosmos (Compositae) J. Cell Sci. 12:421–443.PubMedGoogle Scholar
  27. 27.
    Heslop-Harrison, J., R. B. Knox, Y. Heslop-Harrison and O. Mattsson. 1975. Pollen-wall proteins: emission and role in incompatibility responses. In The biology of the male gamete. (J. G. Duckett and P. A. Racey, eds.). pp. 189–202. [Suppl. 1 to the Biol. J. Linnean Soc. Vol. 71.Google Scholar
  28. 28.
    Knox, R. B. and A. E. Clarke. 1980. Discrimination of self and non-self in plants. Contemp. Top. Immunobiol. 9:1–30.PubMedGoogle Scholar
  29. 29.
    Nettancourt, D. 1977. Incompatibility in Angiosperms. Springer-Verlag, Berlin and New York.Google Scholar
  30. 30.
    Dickinson, H. G. and D. Lewis. 1973. The formation of the tyrphine coating the pollen grains of Raphanus and its properties relating to the self-incompatibility system. Proc. Roy. Soc. Lond. Ser.B. 184:149–65.CrossRefGoogle Scholar
  31. 31.
    Heslop-Harrison, J., R. B. Knox and Y. Heslop-Harrison. 1974. Pollen-wall proteins: exine-held fractions associated with the incompatibility response in the Cruciferae. Theor. Appl. Genetics. 44:133–137.CrossRefGoogle Scholar
  32. 32.
    Nasrallah, M. E. and D. H. Wallace. 1967. Immunogentics of self-incompatibility in Brassica oleracea. Heredity 22:519–527.CrossRefGoogle Scholar
  33. 33.
    Hinata, K. and T. Nishio. 1978. S-Allele specificity of stigma proteins in Brassica oleracea and B. campestris. Heredity 41(1):93–100.CrossRefGoogle Scholar
  34. 34.
    Nettancourt, D. de, M. Devreux, A. Buzzini, M. Cresti, E. Pacini and Sarfatti. 1973. Ultrastructural aspects of the self-incompatibility mechanisms in Lycopersicum peruvianum. J. Cell Sci. 12:403–419.PubMedGoogle Scholar
  35. 35.
    Raff, J. 1980. Unpublished observations.Google Scholar
  36. 36.
    Heslop-Harrison, J. 1978. Genetics and physiology of angiosperm incompatibility systems. Proc. Roy. Soc. Lond. Ser.B. 202:73–92.CrossRefGoogle Scholar
  37. 37.
    Knox, R. B. 1979. Pollen and Allergy. Institute of Biology Studies in Biology No. 107. Edward Arnold, London.Google Scholar
  38. 38.
    Mascarenhas, J. P. 1975. The biochemistry of Angiosperm pollen development. Bot. Rev. 41:259–314.CrossRefGoogle Scholar
  39. 39.
    Loewus, F. and C. Labarca. 1973 Pistil secretion product and pollen tube wall formation. In Biogenesis of Plant Cell Wall Polysaccharides. (F. Loewus, ed.). Academic Press, New York. pp. 175–193.Google Scholar
  40. 40.
    Knox, R. B. 1981. Pollen-Stigma Interactions. In Encyclopaedia of Plant Physiology (New Series): Plant carbohydrates. (F. A. Loewus and W. Tanner, eds.). Springer-Verlag, Berlin and New York.Google Scholar
  41. 41.
    Lewis, D. 1952. Serological reactions of pollen incompatibility substances. Proc. Roy. Soc. Lond. Ser.B. 140:127–135.CrossRefGoogle Scholar
  42. 42.
    Morre, D. J. and W. J. Van der Woude. 1974. Origin and growth of cell surface components. In Macromolecules relating growth and development. (E. D. Hay, T. J. King, J. Papaconstatinou, eds.). 30th Symp. Soc. Dev. Biol. New York and London, Academic Press. pp. 81–111.Google Scholar
  43. 43.
    Knox, R. B., A. Clarke, S. Harrison, P. Smith and J. J. Marchalonis. 1976. Cell recognition in plants: Determinants of the stigma surface and their pollen interactions. Proc. Natl. Acad. Sci. USA 73:2788–2792.PubMedCrossRefGoogle Scholar
  44. 44.
    Clarke, A., P. Gleeson, S. Harrison and R. B. Knox. 1979. Pollen-stigma interactions: Identification and characterization of surface components with recognition potential. Proc. Natl. Acad. Sci. USA 76:3358–3362.PubMedCrossRefGoogle Scholar
  45. 45.
    Clarke, A. E., A. Abbott, T. Mandel and J. Pettitt. 1980. Organization of the wall layers of the stigmatic papilli of Gladiolus gandavensis: a freeze fracture study. J. Ultrastruct. Res. 73:(In Press).Google Scholar
  46. 46.
    Yariv, J., M. M. Rapport and L. Graf. 1962. The interaction of glycosides and saccharides with antibody to the corresponding phenylazo glycosides. Biochem. J. 85:383–388.PubMedGoogle Scholar
  47. 47.
    Yariv, J. H. Lis and E. Katchalski. 1967. Precipitation of arabic acid and some seed polysaccharides by glycosylphenylazo dyes. Biochem. J. 105:1C–2C.PubMedGoogle Scholar
  48. 48.
    Jermyn, M. A. and Y. M. Yeow. 1975. A class of lectins present in the tissues of seed plants. Aust. J. Plant Physiol. 2:501–531.CrossRefGoogle Scholar
  49. 49.
    Clarke, A. E., P. A. Gleeson, M. A. Jermyn and R. B. Knox. 1978. Characterization and localization of 8-lectins in lower and higher plants. Aust. J. Plant Physiol. 5:707–722.CrossRefGoogle Scholar
  50. 50.
    Jermyn, M. A. 1978. Comparative specificity of Concanavalin A and the ß-lectíns. Aust. J. Plant Physiol. 5:687–696.CrossRefGoogle Scholar
  51. 51.
    Clarke, A. E., R. L. Anderson and B. A. Stone. 1979. Form and function of arabinogalactans and arabinogalactan-proteins. Phytochemistry 18:521–540.CrossRefGoogle Scholar
  52. 52.
    Gleeson, P. A. and M. A. Jermyn. 1979. Alteration in the composíton of 8-lectins caused by chemical and enzymic attack. Aust. J. Plant Physiol. 6:25–38.CrossRefGoogle Scholar
  53. 53.
    Gleeson, P. A. and A. E. Clarke. 1979. Structural studies on the major component of the Gladioulus style mucilage, an arabinogalactan-protein. Biochem. J. 181:607–621.PubMedGoogle Scholar
  54. 54.
    Luft, J. H. 1976. The structure and properties of the cell surface coat. Int. Rev. Cytol. 45:291–382.PubMedCrossRefGoogle Scholar
  55. 55.
    Gleeson, P. A., M. A. Jermyn and A. E. Carke. 1979. Isolation of an arabinogalactan-protein by ß-lectin affinity chromatography on trídacnin-Sepharose 4B. Anal. Biochem. 92:41–45.PubMedCrossRefGoogle Scholar
  56. 56.
    Gleeson, P. A. and A. E. Carke. 1980. Comparison of the structures of the major components of the stigma and style secretions of Galdiolus: the arabino-3,6galactans. Carbohydr. Res. 83:187–192.CrossRefGoogle Scholar
  57. 57.
    Aspinall, G. O. and K. G. Rosell. 1978. Polysaccharide component in the stigmatic exudate from Lilium longiflorum. Phytochemistry. 17:919–921.CrossRefGoogle Scholar
  58. 58.
    Kristen, U., M. Biedermann, G. Liebezeit and R. Dawson. 1979. The composition of stigmatic exudate and the ultrastructure of the stigma papillae in Aptenía cordifolia. Europ. J. Cell Biol. 19:281–287.PubMedGoogle Scholar
  59. 59.
    Clarke, A. E. and B. A. Stone. 1982. Chemistry and biology of 1,3-ß-D-Glucans. Macmillan, London.Google Scholar
  60. 60.
    Gleeson, P. A. and A. E. Clarke. 1980. Antigenic determinants of a plant proteoglycan, the Gladiolus style arabinogalactan-protein. Biochem. J. 191:437–447.PubMedGoogle Scholar
  61. 61.
    Larkin, P. J. 1977. Plant protoplasts, agglutination and membrane bound ß-lectins. J. Cell Sci. 26:31–46.PubMedGoogle Scholar
  62. 62.
    Gleeson, P. A. and A. E. Clarke. 1980. Arabinogalactans of sexual and somatic tissus of Gladiolus and Lilium. Phytochemistry 19:1777–1782.CrossRefGoogle Scholar
  63. 63.
    Anderson, D. M. W. and I. C. M. Dea. 1969. Chemotaxonomic aspects of the chemistry of Acacia gum exudates. Phytochemistry 8:167–176.CrossRefGoogle Scholar
  64. 64.
    Labarca, C. and F. Loewus. 1972. The nutritional role of pistil exudate in pollen tube wall formation in Lilium longiflorum. I. Utilization of injected stigmatic exudate. Plant Physiol. 50:7–14.PubMedCrossRefGoogle Scholar
  65. 65.
    Labarca, C. and F. Loewus. 1973. The nutritional role of pistil exudate in pollen tube wall formation in Lilium longiflorum. II. Production and utilization of exudate from stigma and stylar canal. Plant Physiol. 52:87–92.PubMedCrossRefGoogle Scholar
  66. 66.
    Raff, J. W., J. Hutchinson, R. B. Knox and A. E. Clarke. 1979. Cell recognition: antigenic determinants of plant organs and their cultured callus cells. Differentiation 12:179–186.CrossRefGoogle Scholar
  67. 67.
    Raff, J. W. and A. E. Clarke. 1980. Characterization of specific antigen secreted by suspension cultured callus cells of the sweet cherry Prunus avium. Planta (submitted).Google Scholar
  68. 68.
    Vithanage, H. I. M. V., P. A. Gleeson and A. E. Clarke. 1980. Callose: its nature and involvement in self-incompatibility response in Secale cereale. Planta 148:498–509.Google Scholar
  69. 69.
    Faulkner, G., W. C. Kimmins and R. G. Brown. 1973. The use of fluorochromes for the identification of P-1,3 glucans. Can. J. Bot. 51:1503–1504.CrossRefGoogle Scholar
  70. 70.
    Fulcher, R. G., G. Setterfield, M. E. McCully and P. J. Wood. 1977. Observations on the aleurone layer. II. Fluorescence microscopy of the aleurone-sub-aleurone junction with emphasis on possible ß-1,3-glucan deposition in barley. Aust. J. Plant Physiol. 4:917–928.CrossRefGoogle Scholar
  71. 71.
    Smith, M. M. and M. E. McCully. 1978. A critical evaluation of the specificity of aniline blue induced fluorescence. Protoplasma 95:229–254.CrossRefGoogle Scholar
  72. 72.
    Hughes, J. and M. E. McCully. 1975. The use of an optical brightener in the study of plant structure. Stain Technol. 50:319–329.PubMedGoogle Scholar
  73. 73.
    Wood, P. J. 1980. Specificity in the interaction of dyes with polysaccharides. Ind. Eng. Chem. Prod. Res. Dev. 19:19–23.CrossRefGoogle Scholar
  74. 74.
    Wood, P. J. and R. G. Fulcher. 1978. The interaction of some dyes with cereal ß-glucans. Cereal Chem. 55:952–966.Google Scholar
  75. 75.
    Cresti, M., F. Ciampolini, E. Pacini, K. Ramulu and Devreux. 1978. Gamma irradiaton of Prunus avium flower buds: effects on stylar development - an ultra-structural study. Acta Bot. Neerl. 27:97–106.Google Scholar
  76. 76.
    Herth, W., W. W. Franke, H. Bittiger, R. Kuppel and G. Keilich. 1974. Alkali-resistant fibrils of ß-1,3-and ß-1,4-glucans: Structural polysaccharides in the pollen tube wall of Lilium longiflorum. Cytobiologie 9:344–367.Google Scholar
  77. 77.
    Reynolds, J. D. and W. V. Dashek. 1976. Cytochemical analysis of callose localization in Lilium longiflorum pollen tube. Ann. Bot. 40:409–416.Google Scholar
  78. 78.
    Hinch, J. M. and A. E. Clarke. 1980. Callose formation as a response to infection of Zea mays roots by Phytophthora cinnamomi. Physiol. Plant Pathol. (submitted).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Adrienne E. Clarke
    • 1
  • Paul A. Gleeson
    • 1
  1. 1.School of BotanyUniversity of MelbourneParkvilleAustralia

Personalised recommendations