Plant Protoplast Agglutination and Immobilization

  • Philip J. Larkin
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 15)


It is now an almost ubiquitous notion amongst plant cell biologists that plant cells do possess recognition faculties. We have in mind models which envisage plant cells regulating some of their functions in response to external stimuli. These external stimuli may also be thought of in terms of communicated information such as in pollen/stigma interactions or pathogen elicitor induction of host phytoalexins.


Phytophthora Infestans Plant Pathol Tetanus Toxin Plant Lectin Plant Protoplast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kauss, H. 1976. Plant lectins (phytohemagglutinins). Prog. Bot. [Fortschr. Bot.] 38: 58–70.Google Scholar
  2. 2.
    Liener, I.E. 1976. Phytohemagglutiníns (phytolectins). Annu. Rev. Plant Physiol. 27: 291–319.Google Scholar
  3. 3.
    Rüdiger, H. 1978. Lectine, pflanzliche zuckerbindende Proteine. Naturwissenschaften 65: 239–244.PubMedCrossRefGoogle Scholar
  4. 4.
    Nozue, M., K. Tomiyama and N. Doke. 1979. Evidence for adherence of host plasmalemma to infecting hyphae of both compatible and incompatible races of Phytophthora infestans. Physiol. Plant Pathol. 15: 111–115.Google Scholar
  5. 5.
    Shimony, C. and J. Friend. 1976. Ultrastructure of the interaction between Phytophthora infestans (Mont). de Bary and tuber discs of potato (Solanum tuberosum L.) cv. King Edward. Physiol. Plant Pathol. 11: 243–249.Google Scholar
  6. 6.
    Hohl, H.R. and E. Suter. 1976. Host-parasite interfaces in a resistant and a susceptible cultivar of Solanum tuberosum inoculated with Phytophthora infestans: leaf tissue. Can J. Bot. 54: 1956–1970.Google Scholar
  7. 7.
    Asada, Y. and M. Shiraishi. 1979. Discontinuity of the plasma membrane of Raphanus sativus around haustoría of Peronospora parasitica. In Biochemistry and Cytology of Plant-Parasite Interactions. ( K. Tomiyama et al., eds.). Kodansha Ltd. Tokyo. pp. 32–34.Google Scholar
  8. 8.
    Ouchi, S., H. Oku and C. Hibino. 1976. Some characteristics of induced susceptibility and resistance demonstrated in powdery mildew of barley. ibid. pp. 181–184.Google Scholar
  9. 9.
    Tomiyama, K., N. Doke and H.S. Lee. 1976. Mechanisms of hypersensitive cell death in host-parasite interaction. ibid. pp. 136–142.Google Scholar
  10. 10.
    Yeoman, M.M., D.C. Kilpatrick, M.B. Miedzybrodzka and A.R. Gould 1978. Cellular interactions during graft formation in plants, a recognition phenomenon? In Cell-Cell Recognition. Symp. 32, Soc. Exp. Biol. Cambridge University Press. Cambridge. pp. 139–160.Google Scholar
  11. 11.
    Roland, J.-C. 1973. The relationship between the plasmalemma and plant cell wall. Intern. Rev. Cytol. 36: 45–92.Google Scholar
  12. 12.
    Bowles, D.J. and H. Kauss. 1975. Carbohydrate-binding proteins from cellular membranes of plant tissue. Plant Sci. Lett. 4: 411–418.Google Scholar
  13. 13.
    Bowles, D.J. and H. Kauss. 1976. Characterisation, enzymatic and lectin properties of isolated membranes from Phaseolus aureus. Biochim. Biophys. Acta 443: 360–374.Google Scholar
  14. 14.
    Clarke, A.E., R.B. Knox and M.A. Jermyn. 1975. Localization of lectins in legume cotyledons. J. Cell Sci. 19: 157–167.PubMedGoogle Scholar
  15. 15.
    Bowles, D.J., H. Lis and N. Sharon. 1979. Distribution of lectins in membranes of soybean and peanut plants. I. General distribution in root, shoot and leaf tissue at different stages of growth. Planta 145: 193–198.Google Scholar
  16. 16.
    Bowles, D.J. 1979. Lectins as components of plant membranes. In Plant Organelles. ( E. Reid, ed.). Ellis Horwood, Chichester. pp. 165–171.Google Scholar
  17. 17.
    Kauss, H. 1976. Plant lectins (phytohemagglutinins). Prog. Bot. 38: 58–70.Google Scholar
  18. 18.
    Kauss, H. and D.J. Bowles. 1976. Some properties of carbohydrate-binding proteins (lectins) solubilized from cell walls of Phaseolus aureus. Planta 130: 169–174.CrossRefGoogle Scholar
  19. 19.
    Kilpatrick, D.C., M.M. Yeoman and A.R. Gould. 1979. Tissue and subcellular distribution of the lectin from Datura stramonium (thorn apple). Biochem. J. 184: 215–219.Google Scholar
  20. 20.
    Glimelius, K., A. Wallin and T. Eriksson 1974. Agglutinating effects of Concanavalin A on isolated protoplasts of Daucus carota. Physiol. Plant. 31: 225–230.Google Scholar
  21. 21.
    Williamson, F.A., L.C. Fowke, F.C. Constabel and O.L. Gamborg. 1976: Labelling of Concanavalin A sites on the plasma membrane of soybean protoplasts. Protoplasma 89: 305–316.CrossRefGoogle Scholar
  22. 22.
    Burgess, J. and P.J. Linstead. 1976. Ultrastructural studies of the binding of Concanavalin A to the plasma-lemma of higher plant protoplasts. Planta 130: 73–79.CrossRefGoogle Scholar
  23. 23.
    Larkin, P.J. 1978. Plant protoplast agglutination by lectins. Plant Physiol. 61: 626–629.PubMedCrossRefGoogle Scholar
  24. 24.
    Chin, J.C. and K.J. Scott. 1979. Effect of phytolectins on isolated protoplasts from plants. Ann. Bot. 43: 33–44.Google Scholar
  25. 25.
    Hanke, D.E. 1979. Plasma-membrane surface components investigated using protoplasts. In Plant Organelles. ( Eric Reid, ed.) Chichester, Ellis Horwood Ltd. pp. 196–198.Google Scholar
  26. 26.
    Larkin, P.J. unpublished.Google Scholar
  27. 27.
    Williamson, F.A. 1979. Concanavalin A binding sites on the plasma membrane of leek stem protoplasts. Planta 144: 209–215.CrossRefGoogle Scholar
  28. 28.
    Nicolson, G.L. 1974. The interactions of lectins with animal cell surfaces. Intern. Rev. Cytol. 39: 89–190.Google Scholar
  29. 29.
    Lotan, R., H. Lis, A. Rosenwasser, A. Novagrodsky and N. Sharon. 1973. Enhancement of the biological activities of soybean agglutinin by cross-linking with glutaraldehyde. Biochem. Biophys. Res. Comm. 55: 1347–1355.Google Scholar
  30. 30.
    Hamblin, J. and S.P. Kent. 1973. Possible role of phytohaemagglutinin in Phaseolus vulgaris L. Nature (New Biol.) 245: 28–30.CrossRefGoogle Scholar
  31. 31.
    Bohlool, B.B. and E.L. Schmidt 1974. Lectins: a possible basis for specificity in the Rhizobium-legume root nodule symbiosis. Science 185: 269–271.PubMedCrossRefGoogle Scholar
  32. 32.
    Dazzo, F.B. and D.H. Hubbell. 1975. Antigenic differences between infective and non-infective strains of Rhizobium trifolii. Appl. Microbiol. 30: 172–177.Google Scholar
  33. 33.
    Dazzo, F.B. and D.H. Hubbell. 1975. Cross reactive antigens and lectin as determinants of symbiotic specificity in the Rhizobium-clover association. Appl. Microbiol. 30: 1017–1033.Google Scholar
  34. 34.
    Wolpert, J.S. and P. Albersheim. 1976. Host-symbiont interactions I The lectins of legumes interact with the 0-antigen-containing lipopolysaccharides of their symbiont Rhizobia. Biochem. Biophys. Res. Commun. 70: 729–737.Google Scholar
  35. 35.
    Dazzo, F.B., W.E. Yanke and W.J. Brill. 1978. Trifoliin: a Rhizobium recognition protein from white clover. Biochim. Biophys. Acta 539: 276–286.Google Scholar
  36. 36.
    Dazzo, F.B. and W.J. Brill. 1978. Regulation by fixed nitrogen of lost-symbiont recognition in the Rhizobium-clover symbiosis. Plant Physiol. 62: 18–21.PubMedCrossRefGoogle Scholar
  37. 37.
    Bhuvaneswari, T.V. and W.D. Bauer. 1978. Role of lectin in plant-microorganism interactions III Influence of rhizosphere/rhizoplane culture conditions on the soybean lectin-binding properties of rhizobia. Plant Physiol. 62: 71–74.PubMedCrossRefGoogle Scholar
  38. 38.
    Calvert, H.E., M. Lalonde, T.V. Bhuvaneswari and W.D. Bauer. 1978. Role of lectins in plant-microorganism interactions. IV Ultrastructural localization of soybean lectin binding sites on Rhizobium japonicum. Can. J. Microbiol. 24: 784–793.Google Scholar
  39. 39.
    Kato, G., Y. Maruyama and M. Nakamura. 1979. Role of lectins and lipopolysaccharides in the recognition process of specific legume-Rhizobium symbiosis. Agric. Biol. Chem. 43: 1085–1092.Google Scholar
  40. 40.
    Schmidt, E.L. 1979. Initiation of plant root-microbe interactions. Ann. Rev. Microbiol. 33: 355–376.Google Scholar
  41. 41.
    Ozawa, T. and M. Yamaguchi. 1979. Inhibition of soybean cell growth by the adsorption of Rhizobium japonicum. Plant Physiol. 64: 65–68.PubMedCrossRefGoogle Scholar
  42. 42.
    Law, I.J. and B.W. Strijdom. 1977. Some observations on plant lectins and Rhizobium specificity. Soil Biol. Biochem. 9: 79–84.Google Scholar
  43. 43.
    Chen, A.T. and D.A. Phillips. 1976. Attachment of Rhizobium to legume roots as the basis for specific interactions. Physiol. Plant. 38: 83–88.Google Scholar
  44. 44.
    Gill, D.M. and C.A. King. 1975. The mechanism of action of cholera toxin in pigeon erythrocyte lysates. J. Biol. Chem. 250: 6424–6432.Google Scholar
  45. 45.
    Ledley, F.D., G. Lee, L.D. Lohn, W.H. Habig and M.C. Hardegree. 1977. Tetanus toxin interactions with thyroid plasma membranes. Implications for structure and function of tetanus toxin receptors and potential pathophysiological significance. J. Biol. Chem. 252: 4049–4055.Google Scholar
  46. 46.
    Draper, R.K., D. Chin and M.I. Simon. 1978. Diphtheria toxin has the properties of a lectin. Proc. Natl. Acad. Sci. U.S.A. 75: 261–265.Google Scholar
  47. 47.
    Hartmann, J.X., K.N. Kao, 0.L. Gamborg and R.A. Miller. 1973. Immunological methods for the agglutination of protoplasts from cell suspension cultures of different genera. Planta 112: 45–56.CrossRefGoogle Scholar
  48. 48.
    Burgess, J. and E.N. Fleming. 1974. Ultrastructural studies of the aggregation and fusion of plant protoplasts. Planta 118: 183–193.CrossRefGoogle Scholar
  49. 49.
    Strobel, G.A. and W.H. Hess. 1974. Evidence for the presence of toxin-binding protein on the plasma membrane of sugarcane cells. Proc. Natl. Acad. Sci. U.S.A. 71: 1413–1417.Google Scholar
  50. 50.
    Larkin, P.J. 1977. Plant protoplast agglutination and membrane-bound ß-lectins. J. Cell Sci. 26: 31–46.PubMedGoogle Scholar
  51. 51.
    Raff, J., I.F.C. McKenzie, and A.E. Clarke. 1980. Antigenic determinants of Prunus avium are associated with the protoplast surface. Z. Pflanzenphysiol. 98: 225–234.Google Scholar
  52. 52.
    Yariv, J., M.M. Rapport and L. Graf. 1962. The interaction of glycosides and saccharides with antibody to the corresponding phenylazo glycosides. Biochem. J. 85: 383–388.Google Scholar
  53. 53.
    Jermyn, M.A. and Y.M. Yeow. 1975. A class of lectins present in the tissues of seed plants. Aust. J. Plant Physiol. 2: 501–531.Google Scholar
  54. 54.
    Larkin, P.J. 1978. Plant protoplast agglutination by artificial carbohydrate antigens. J. Cell Sci. 30: 283–292.PubMedGoogle Scholar
  55. 55.
    Gleeson, P.A. and A.E. Clarke. 1979. Structural studies on the major component of Gladiolus style mucilage, an arabinogalactan protein. Biochem. J. 181: 607–621.Google Scholar
  56. 56.
    Clark, A.E., P. Gleeson, S. Harrison and R.B. Knox. 1979. Pollen-stigma interactions: identification and characterization of surface components with recognition potential. Proc. Natl. Acad. Sci. U.S.A. 76: 3358–3362.Google Scholar
  57. 57.
    Clarke, A.E., R.L. Anderson and B.A. Stone 1979. Form and function of arabinogalactans and arabinogalactanproteins. Phytochemistry 18: 521–540.CrossRefGoogle Scholar
  58. 58.
    Baldo, B.A., H. Neukon, B.A. Stone and G. Uhlenbruck. 1978. Reaction of some invertebrate and plant agglutinins and a mouse myeloma anti-galactan protein with an arabinogalactan from wheat. Aust. J. Biol. Sci. 31: 149–160.Google Scholar
  59. 59.
    Majumdar, T. and A. Surolia. 1978. Cross-linked arabinogalactan–new affinity matrix for purification of Ricinus communis lectins. Experientia 34: 979–980.PubMedCrossRefGoogle Scholar
  60. 60.
    Majumdar, T. and A. Surolia. 1978. A large scale preparation of peanut agglutinin on a new affinity matrix. Prep. Biochem. 8: 119–131.Google Scholar
  61. 61.
    Larkin, P.J. 1977. The use of cell surface properties for hybrid protoplast selection. Ph.D thesis. University of Adelaide.Google Scholar
  62. 62.
    Jermyn, M. 1977. ß-Lectin-flavonol interactions. Arabinogalactan Protein News 1: 37–38.Google Scholar
  63. 63.
    Peters, B.M., D.H. Cribbs and D.A. Stelzig. 1978. Agglutination of plant protoplasts by fungal cell wall glucans. Science 201: 364–365.PubMedCrossRefGoogle Scholar
  64. 64.
    Shirey, R.E. and D.A. Stelzig. 1980. Structural characterization of an elicitor enzymatically released from cell walls of Phytophthora infestans. Phytopathology (In press).Google Scholar
  65. 65.
    Tomiyama, K. 1971. Cytological and Biochemical studies of the hypersensitive reaction of potato cells to Phytophthora infestans. In Morphological and Biochemical Events in Plant-Parasite Interaction. ( S. Akai and S. Ouchi, eds.). The Phytochem. Soc. Japan. Tokyo. pp. 387–401.Google Scholar
  66. 66.
    Kue, J., W. Currier, J. Elliston and J. McIntyre. 1976. Determinants of plant disease resistance and susceptibility: a perspective based on three plant-parasite interactions. In Biochemistry and Cytology of Plant-Parasite Interaction. ( K. Tomiyama et al., eds.). Kodansha Ltd. Tokyo. pp. 168–180.Google Scholar
  67. 67.
    Marcan, H., M.C. Jarvis and J. Friend. 1979. Effect of methyl glycosides and oligosaccharides on cell death and browning of potato tuber discs induced by mycelial components of Phytophthora infestans. Physiol. Plant Pathol. 14: 1–9.Google Scholar
  68. 68.
    Kim, W.K.and I. Uritani. 1974. Fungal extracts that induce phytoalexins in sweet potato roots. Plant Cell Physiol. 15: 1093–1098.Google Scholar
  69. 69.
    Albersheim, P. and B.S. Valent. 1978. Host-pathogen interactions in plants. Plants, when exposed to oligosaccharides of fungal origin, defend themselves by accumulating antibiotics. J. Cell Biol. 78: 627–643.Google Scholar
  70. 70.
    Uritani, I. 1978. Biochemistry of host response to infection. In Progress in Phytochemistry. Vol. 5 ( L. Reinhold et al., eds.). Pergamon, London. pp. 29–63.Google Scholar
  71. 71.
    Keen, N.T. 1976. Specific elicitors of phytoalexin production: determinants of race specificity. In Biochemistry and Cytology of Plant-Parasite Interaction. ( K. Tomiyama et al., eds.). Kodansha Ltd. Tokyo. pp. 84–93.Google Scholar
  72. 72.
    Keen, N.T. 1978. Surface glycoproteíns of Phytophthora megasperma var. sojae function as race specific glyceollin elicitors in soybeans. ( Abstr.) Phytopathol. News 12: 221.Google Scholar
  73. 73.
    van Díjkman, A. and A.K. Sijpesteijn. 1973. Leakage of preabsorbed 32P from tomato leaf discs infiltrated with high molecular weight products of incompatible races of Cladosporium fulvum. Physiol. Plant Path. 3: 57–67.Google Scholar
  74. 74.
    Lazarovits, G., B.S. Bhullar, H.J. Sugiyama and V.J. Higgens. 1979. Purification and partial characterization of a glycoproteín toxin produced by Cladosporium fulvum. Phytopathology 69: 1062–1068.CrossRefGoogle Scholar
  75. 75.
    Doke, N., N.A. Garas and J. Kue. 1980. Effect on host hypersensitivity of suppressors released during the germination of Phytophthora infestans cytospores. Phytopathology 70: 35–39.CrossRefGoogle Scholar
  76. 76.
    El-Banoby, F.E. and K. Rudolph. 1979. Induction of water-soaking in plant leaves by extracellular polysaccharides from phytopathogenic pseudomonads and xanthomonads. Physiol. Plant Pathol. 15: 341–349.Google Scholar
  77. 77.
    Nachmias, A., I. Barash, V. Buchner, Z. Solel and G. A. Strobel. 1979. A phytotoxic glycopeptide from lemon leaves infected with Phoma tracheiphila. Physíol. Plant Pathol. 14: 135–140.Google Scholar
  78. 78.
    Rancillac, M., R. Kaur-Sawhney, B. Straskawicz and A.W. Galston. 1976. Effects of cycloheximíde and kinetin pretreatments on responses of susceptible and resistant Avena leaf protoplasts to the phyto-toxin victorín. Plant and Cell Physiol. 17: 987–995.Google Scholar
  79. 79.
    Wiese, L. and W. Wiese. 1978. Sex cell contact in Chlamydomonas, a model for cell recognition. In Cell-Cell Recognition. Symp. 32, Soc. Exp. Biol. pp. 83–103.Google Scholar
  80. 80.
    Lippincott, B.B., M.H. Whatley and J.A. Lippincott. 1977. Tumor induction by Agrobacterium involves attachment of the bacterium to a site on the host plant cell wall. Plant Physiol. 59: 388–390.PubMedCrossRefGoogle Scholar
  81. 81.
    Lippincott, J.A. and B.B. Lippincott. 1978. Cell walls on crown-gall tumors and embryonic plant tissues lack Agrobacterium adhesion sites. Science 199: 1075–1078.PubMedCrossRefGoogle Scholar
  82. 82.
    Glogowski, W. and A.G. Galsky. 1978. Agrobacterium tumefaciens site attachment as a necessary pre-requisite for crown gall tumor formation on potato discs. Plant Physiol. 61: 1031–1033.PubMedCrossRefGoogle Scholar
  83. 83.
    Smith, V.A. and J. Hindley. 1978. Effect of agrocin 84 on attachment of Agrobacterium tumefaciens to cultured tobacco cells. Nature 276: 498–500.CrossRefGoogle Scholar
  84. 84.
    Ohyama, K., L.E. Pelcher, A. Schaeffer and L.C. Fowke. 1979. In vitro binding of Agrobacterium tumefaciens to plant cells from suspension culture. Plant Physiol. 63: 382–387.PubMedCrossRefGoogle Scholar
  85. 85.
    Sequeira, L., G. Gaard and G.A. de Zoeten. 1977. Interaction of bacteria and host cell walls: its relation to mechanisms of induced resistance. Physiol. Plant Pathol. 10: 43–50.Google Scholar
  86. 86.
    Sequeira, L. 1978. Lectins and their role in host-pathogen specificity. Annu. Rev. Phytopathol. 16: 453–481.Google Scholar
  87. 87.
    Whatley, M.H., N. Hunter, M.A. Cantrell, C. Hendrick, K. Keegstra and L. Sequeira. 1980. Lipopolysaccharide composition of the wilt pathogen, Pseudomonas solanacearum. Plant Physiol. 65: 557–559.Google Scholar
  88. 88.
    Sequeira, L. and T.L. Graham. 1977. Agglutination of avirulent strains of Pseudomonas solanacearum by potato lectin. Physiol. Plant Pathol. 11: 43–54.Google Scholar
  89. 89.
    Goodman, R.N., P.-Y. Huang, J.S. Huang and V. Thaipanich. 1976. Induced resistance to bacterial infection. In Biochemistry and Cytology of Plant-Parasite Interaction. ( K. Tomiyama et al., eds.). Kodansha Ltd. Tokyo. pp. 35–42.Google Scholar
  90. 90.
    Morino, 0. 1976. Induction of bacterial leaf blight resistance by incompatible strains of Xanthomonas oryzae in rice. ibid pp. 43–55.Google Scholar
  91. 91.
    Anderson, A.J. and C. Jasalavich. 1979. Agglutination of pseudomonad cells by plant products. Physiol Plant Pathol. 15: 149–159.CrossRefGoogle Scholar
  92. 92.
    Sing, V.O. and M.N. Schroth. 1977. Bacteria-plant cell surface interactions: active immobilization of saprophytic bacteria in plant leaves. Science 197: 759–761.PubMedCrossRefGoogle Scholar
  93. 93.
    Kameya, T. 1973. The effects of gelatin on aggregation of protoplasts from higher plants. Planta 115: 77–82.CrossRefGoogle Scholar
  94. 94.
    Keller, F. personal communication in ref. 57.Google Scholar
  95. 95.
    Kao, K.N. and M.R. Michayluk. 1974. A method for high-frequency intergeneric fusion of plant protoplasts. Planta 115: 355–367.CrossRefGoogle Scholar
  96. 96.
    Wallin, A., K. Glimelius and T. Eriksson. 1974. The induction of aggregation and fusion of Daucus carota protoplasts by polyethylene glycol. Z. Pflanzenphysiol. 74: 64–80.Google Scholar
  97. 97.
    Nagata, T. 1978. A novel cell-fusion method of protoplasts by polyvinyl alcohol. Naturwissenschaften 65: 263–264.CrossRefGoogle Scholar
  98. 98.
    Hankins, C.N., J.I. Kindinger and L.M. Shannon. 1980. Legume u-galactosidases which have hemagglutinin properties. Plant Physiol. 65: 618–622.PubMedCrossRefGoogle Scholar
  99. 99.
    Gamborg, O.L., R.A. Miller and K. Ojima. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell. Res. 50: 151–158.Google Scholar
  100. 100.
    Burgess, J. and P.J. Linstead 1977. Coumarin inhibition of microfibril formation at the surface of cultured protoplasts. Planta 133: 267–273.CrossRefGoogle Scholar
  101. 101.
    Meyer, Y. and W. Herth. 1978. Chemical inhibition of cell wall formation and cytokinesis but not nuclear division, in protoplasts of Nicotiana tabacum L. cultured in vitro. Planta 142: 253–262.CrossRefGoogle Scholar
  102. 102.
    Wang, P.Y., D.W. Evans and W. Zingg. 1980. Concanavalin A agglutinability of dextran gel spheres. A physical model for cell agglutinability. Biochim. Biophys. Acta 628: 228–239.Google Scholar
  103. 103.
    Gibson, G.A., M.D. Marquardt and J.A. Gordon. 1975. Cell rigidity: effect on concanavalin A-mediated agglutinability of fibroblasts after fixation. Science 189: 45–46.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Philip J. Larkin
    • 1
  1. 1.Division of Plant IndustryCSIROCanberra CityAustralia

Personalised recommendations