Galactofuranosyl-Containing Lipoglycopeptide in Penicillium

  • J. E. Gander
  • Cynthia J. Laybourn
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 15)


Fungi secrete numerous macromolecules which are derived from a) walls, b) enzymes, and c) subcellular organelles. These macromolecules are subject to the action of lytic enzymes located in the nutrient medium. Therefore, many polymers found in media supporting fungal growth are degradation products of more complex substances. For instance, galactocarolose, a 5-O-ß-D-galactofuranosyl-containing decasaccharide, and mannocarolose, an α-D-mannopyranosyl-containing nonasaccharide, first isolated from 28-day culture filtrates of Penicillium charlesii and partially characterized in W. N. Haworth’s laboratory1, 2 have been shown to be derived from a more complex glycopeptide3–5 which first appears in the growth medium soon after formation of conidia.6 Because of the composition of the complex glycopeptide we have referred to it as a peptidophosphogalactomannan.3 The glycopeptide may be the major polysaccharide-containing substance secreted prior to general lysís of the fungus.6, 7 Peptidophosphogalactomannans and/or peptidogalactomannans have been obtained from Cladosporium werneckii,8, 9 species of Aspergillus,10–12 several species of dermatophytes from the genera of Trichophyton and Microsporum, 13, 14 Fulvia fulva (Cooke) Ciferril5 and several species of Penicilliuml0, 16, 17 and may be common constituents of many genera of fungi.


Culture Filtrate Aspergillus Fumigatus Partial Characterization Exocellular Polysaccharide United States Public Health Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clutterbuck, P. W., W. N. Haworth, H. Raistrick, G. Smith, and M. Stacey. 1934. XVI. Studies in the biochemistry of micro-organisms. 36. The metabolic products of Penicillium charlesii G. Smith. Biochem. JJ. 28: 94-110.Google Scholar
  2. 2.
    Haworth, W. N., H. Raistrick, and M. Stacey. 1937. LXXVI. Polysaccharides synthesized by micro-organisms. III. The molecular structure of galactocarolose produced from glucose by Penicillium charlesii G. Smith. Biochem. J. 31: 640-644.Google Scholar
  3. 3.
    Gander, J. E., N. H. Jentoft, L. R. Drewes, and P. D. Rick. 1974. The 5-0-ß-D_-galactofuranosyl-containing exocellular glycopeptide of Penicillium charlesii. Characterization of the phosphogalactomannan. J. Biol. Chem. 249: 2063-2072.Google Scholar
  4. 4.
    Rick, P. D., L. R. Drewes, and J. E. Gander. 1974. The 5-0-ß-D-galactofuranosyl-containing exocellular glycopeptide from Penícillium charlesii. Occurrence of ethanolamine and partial characterization of the peptide portion and the carbohydrate-peptide linkage. J. Biol. Chem. 249: 2073-2078.Google Scholar
  5. 5.
    Unkefer, C. J., and J. E. Gander. 1979. The 5-0-ß-D-galactofuranosyl-containing glycopeptide from Penicillium charlesii. Carbon-13 nuclear magnetic resonance studies. J. Biol. Chem. 254: 12131-12135.Google Scholar
  6. 6.
    Drewes, L. R., P. D. Rick, and J. E. Gander. 1975. In vivo biosynthesis of peptidophosphogalactomannans in Penícillium charlesii. Arch. Microbiol. 104: 101-104.Google Scholar
  7. 7.
    Preston, J. F. and J. E. Gander. 1968. Isolation and partial characterization of the extracellular polysaccharides of Penicillíum charlesíi. I. Occurrence of galactofuranose in high molecular weight polymers. Arch. Biochem. Biophys. 124: 504-512.Google Scholar
  8. 8.
    Lloyd, K. 0. 1970. Isolation, characterization, and partial structure of peptido-galactomannans from the yeast form of Cladosporium weneckii. Biochemistry 9: 3446 - 3453.PubMedCrossRefGoogle Scholar
  9. 9.
    Lloyd, K. 0. 1972. Molecular organization of a covalent peptido-phosphopolysaccharide complex from the yeast of Cladosporium werneckíi. Biochemistry 11: 3884 - 3890.PubMedCrossRefGoogle Scholar
  10. 10.
    Azuma, I., H. Kimura, F. Hírao, E. Tsubura, Y. Yamamura, and A. Misaki. 1971. Biochemical and immunochemical properties of glycopeptides obtained from Aspergillus fumigatus. Japan J. Microbiol. 15: 237-246.Google Scholar
  11. 11.
    Sakaguchi, 0., M. Suzuki, and K. Yokota. 1968. Effect of partial acid hydrolysis on precipitin activity of Aspergillus fumigatus galactomannan. Japan J. Microbiol. 12: 123-124.Google Scholar
  12. 12.
    Suzuki, S., M. Suzuki, K. Yokota, H. Sunayama, and O. Sakaguchí. 1967. On the immunochemical and biochemical studies of fungi. XI. Cross reaction of the polysaccharides of Aspergillus fumigatus, Candida albicans, Saccharomyces cerevisíae and Trichophyton rubrum against Candida albicans and Saccharomyces cerevisiae antísera. Japan J. Microbiol. 11: 269-273.Google Scholar
  13. 13.
    Barker, S. A., C. N. D. Cruickshank, and J. H. Holden. 1963. Structure of a galactomannan-peptide allergen from Tichophyton mentagrophytes. Biochem. Biophys. Acta 74: 239-246.Google Scholar
  14. 14.
    Bishop, C. T., F. Blank, and M. HranisavljevicJakovljevic. 1962. The water-soluble polysaccharides of Dermatophytes. I. A galactomannan from Trichophyton granulosum. Can. JJ. Chem. 40: 1815-1825.Google Scholar
  15. 15.
    Dow, J. M., and J. A. Callow:-allow 1979.Partial characterization of glycopeptides from culture filtrates of Fulvia fulva (Cooke) Ciferri (syn.Cladosporium fulvum), the tomato leaf mould pathogen. J. Gen. Microbiol. 113: 57 - 66.Google Scholar
  16. 16.
    Miyazaki, T., and T. Yadomae. 1968. Isolation of a water-soluble polysaccharide from the mycelium of Penicillium chrysogenum. Studies on fungal polysaccharides. Chem. Pharm. Bull. 16: 1721-1725.Google Scholar
  17. 17.
    Preston, J. F., E. Lapis, and J7-E. Gander. 1970. Immunological investigation of Penicillium. I. Serological reactivities of exocellular polysaccharides produced by six Penicillium species. Can. J. Microbiol. 16: 687-694.Google Scholar
  18. 18.
    Trejo, A. G., J. W. Haddock, G. Chittenden, and J. Baddiley. 1971. The biosynthesis of galactofuranosyl residues in galactocarolose. Biochem. J. 122: 49-57.Google Scholar
  19. 19.
    Gander, J. E. and F. Fang. 1976. The occurrence of ethanolamine and galactofuranosyl residues attached to Penicillium charlesii cell wall saccharides. Biochem. Biophys. Res. Commun. 71: 719-725.Google Scholar
  20. 20.
    Bartnicki-Garcia, S. 1970. Cell wall composition and other biochemical markers in fungal phylogeny. In Phytochemical Phylogeny, ( J. Harbone, ed.). Academic Press, London. pp. 81 - 102.Google Scholar
  21. 21.
    Mahadevan, P. R., and E. L. Tatum. 1965. Relationship of the major constituents of the Neurospora crassa cell wall to wild type and colonial morphology. J. Bacteriol. 90: 1073 - 1081.PubMedGoogle Scholar
  22. 22.
    Mahadevan, P. R., and E. L. Tatum. 1967. Localization of structural polymers in the cell wall of Neurospora crassa. J. Cell Biol. 35: 295 - 302.PubMedCrossRefGoogle Scholar
  23. 23.
    Hunsley, D., and J. H. Burnett. 1970. The ultrastructural architecture of the walls of some hyphal fungi. J. Gen. Microbiol. 62: 203-218.Google Scholar
  24. 24.
    Gander, J. E. 1977. The occurrence of N,N’-dimethylethanolamine in the 5-0-ß-D-galactofuranosyl-containing exocellular glycopeptide of Penicillium charlesii. Exp. Mycol. 1: 1-8.Google Scholar
  25. 25.
    Cruickshank, C. N. D., M. D. Trotter, and S. R. Wood. 1960. Studies on Trichophytin sensitivity.J. Invest. Derm. 35: 219-223.Google Scholar
  26. 26.
    Wood, S-..—R. and C. N. D. Cruickshank. 1962. The relation between Trichophytin sensitivity and fungal infection. Brit. J. Derm. 74: 329-336.Google Scholar
  27. 27.
    Baker, J. A., C. N. D. Cruickshank, J. H. Morris, and S. R. Wood. 1962. The isolation of trichophytin glycopeptide and its structure in relation to the immediate and delayed reactions. Immunology 5: 627 - 632.Google Scholar
  28. 28.
    Blank, F., and M. B. Perry. 1964. The water-soluble polysaccharides of Dermatophytes. III. A galactomannan from Trichophyton interdigitale. Can. J. Chem. 42: 2862-2871.Google Scholar
  29. 29.
    Bishop, C. T., M. B. Perry, F. Blank, and F. P. Cooper. 1965. The water-soluble polysaccharides of Dermatophytes. IV. Galactomannans I from Trichophyton gramulosum, Trichophyton interdigitale, Microsporum quinckeanum, Trichophyton rubrum, and Trichophyton schönlenii. Can. J. Chem. 43: 30-39.Google Scholar
  30. 30.
    Axuma, I., H. Kimura, F. Hirao, E. Tsubura, and Y. Yamamura. 1967. Biochemical and immunochemical studies on Aspergillus. I. Chemical and biological investigations of lipopolysaccharide, protein and polysaccharide fractions isolated from Aspergillus fumígatus. Japan J. Med. Mycol. 8: 210-220.Google Scholar
  31. 31.
    Sakaguchi, 0., K. Yokata, and M. Suzuki. 1967. Biochemical and immunochemical studies on fungi. XII. On the galactomannan obtained from culture filtrate and cells of Aspergillus fumigatus. Yakugaku Zasshi. 87: 1268-1272.Google Scholar
  32. 32.
    van Dijkman, A., and A. K. Sijpesteijn. 1971. A biochemical mechanism for the gene-for-gene rsistance of tomato to Caldosporium fulvum. Netherlands J. Plant Pathol. 77: 14-24.Google Scholar
  33. 33.
    van Díjkman, A., and A. Kaars Sijpesteijn. 1973. Leakage of pre-absorbed 32P from tomato leaf discs infiltrated with high molecular weight products of imcompatible races of Cladosporium fulvum. Physiol. Plant Pathol. 3: 57-67.Google Scholar
  34. 34.
    Dow, J. M. and J. A. Callow. 1979. Leakage of electolytes from isolated leaf mesophyll cells of tomato induced by glycoproteins from culture filtrates of Fulvia fulva (Cooke) Ciferrí (syn. Cladosporium fulvum). Physiol. Plant Pathol. 15: 27-34.Google Scholar
  35. 35.
    Preston, J. F., E. Lapis, S. Westerhouse, and J. E. Gander. 1969. Isolation and partial characterization of the exocellular polysaccharides of Penicllium charlesii. II. The occurrence of phosphate groups in high molecular weight polysaccharides. Arch. Biochem. Biophys. 134: 316-323.Google Scholar
  36. 36.
    Preston, J. F., E. Lapis, and J. E. Gander. 1969. Isolation and partial characterization or the exocellular polysaccharides of Penicillium charlesii. III. Heterogeneity in size and composition of high molecular weight exocellular polysaccharides. Arch. Biochem. Biophys. 134: 324-334.Google Scholar
  37. 37.
    Rietschel-Berst, M., N. H. Jentoft, P. D. Rick, C. Pletcher, F. Fang, and J. E. Gander. 1977. Extracellular exo-ß-D-galactofuranosidase from Penicillium charlesii. Isolation, purification and properties. J. Biol. Chem. 252: 3219-3226.Google Scholar
  38. 38.
    Jansson, P. E. and B. Lindberg. 1980. Structural studies of varianose. Carbohyd. Res. 82: 97-102.Google Scholar
  39. 39.
    Unkefer, C. J., and J. E. Gander. 19807- 980 Structuralstudies on the 5-0-ß-D-galactoguranosyl-containing exocellular glycopeptide of Pencillium charlesii using phosphorus-31 nmr spectroscopy. Fed. Proc. 39: 1634.Google Scholar
  40. 40.
    Drewes, L. R. and J. E. Gander. 1975. Exocellular glycopeptide from a Penicillium charlesii mutant incapable growth on D-galactose. J. Bacteriol. 121: 675 - 681.PubMedGoogle Scholar
  41. 41.
    Gander, J. E., L. R. Drewes, F. Fang, and A. Lui. 1977. 5-0-ß-D-galactofuranosyl-containing exocellular glycopeptide of Penicillium charlesii. Incorporation of mannose from GDP-D-mannose into glycopeptide. JJ. Biol. Chem. 252: 2187-2193.Google Scholar
  42. 42.
    Gander, J. E. and F. Fang. 1977. Properties of Pencillium GDP-D-mannose:glycopeptide mannosyltransferase solubilized with Triton X-100. J. Supramol. Structure 6: 579-589.Google Scholar
  43. 43.
    Gander, J. E. and F. Fang. 1980. Toward understanding the structure, biosynthesis and function of a membrane-bound fungal glycopeptide. Biosynthetic studies. In Fungal Polysaccharides (P. Sandford and K. Matsuda, eds.) ACS Sump. Ser. No. 126, pp. 35 — 48.Google Scholar
  44. 44.
    Tonn, S. J. and J. E. Gander. 1977. Partial characterization of the peptide portion of the exocellular peptidophosphogalactomannans of P. charlesii. 173rd Annu. Meeting, Amer. Chem. Soc., Chicago, Illinois.Google Scholar
  45. 45.
    Mort, A. and D. T. A. Lamport. 1977. Anhydrous hydro-gen fluoride deglycosylates glycoproteins. Anal. Biochem. 82: 289 - 309.Google Scholar
  46. 47.
    Schibeci, A., J. B. M. Rattray, and D. K. Kidby. 1973.Isolation and identification of yeast plasma membrane. Biochem. Biophys. Acta 311: 15 - 25.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • J. E. Gander
    • 1
  • Cynthia J. Laybourn
    • 1
  1. 1.Department of Biochemistry College of Biological SciencesUniversity of MinnesotaSt. PaulUSA

Personalised recommendations