Structure and Function of Complex Carbohydrates Active in Regulating the Interactions of Plants and Their Pests

  • Peter Albersheim
  • Michael McNeil
  • Alan G. Darvill
  • Barbara S. Valent
  • Michael G. Hahn
  • Borre K. Robertsen
  • Per Åman
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 15)


Our laboratory has recently come to realize that complex carbohydrates of higher plants, fungi, and bacteria can act as regulatory molecules, that is, as molecules which in minute quantities alter the metabolism of receptive cells by causing the synthesis of specific proteins. It is not surprising that these structurally complex and exquisitely specific molecules can possess regulatory properties, as many diverse classes of molecules including glycoproteins, proteins, peptides, steroids and a variety of smaller molecules such as epinephrine, indoleacetic acid, gibberellic acid, cytokinins, and even ethylene, are known to possess regulatory properties.


Soybean Cultivar Regulatory Molecule Complex Carbohydrate Avirulence Gene Acidic Polysaccharide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albersheim, P. and A. J. Anderson-Prouty. 1975. Carbohydrates, proteins, cell surfaces, and the biochemistry of pathogenesis. Annu. Rev. Plant Physiol. 26: 31–52.CrossRefGoogle Scholar
  2. 2.
    Lrner, R. A. and D. Bergsma. 1978. The Molecular Basis of Cell-Cell Interaction, XIV ( 2 ). Liss, New York.Google Scholar
  3. 3.
    Marchesi, V. T., V. Ginsburg, P. W. Robbins, and C. F. Fox. 1978. Cell Surface Carbohydrates and Biological Recognition. Liss, New York.Google Scholar
  4. 4.
    Town, C. and E. Stanford. 1979. An oligosaccharidecontaining factor that induces cell differentiaton in Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA. 76: 308–312.Google Scholar
  5. 5.
    Albersheim, P. and B. S. Valent. 1978. Host-pathogen interactions in plants. Plants, when exposed to oligosaccharides of fungal origin, defend themselves by accumulating antibiotics. J. Cell Biol. 78: 627–643.PubMedCrossRefGoogle Scholar
  6. 6.
    Ayers, A. R., J. Ebel, B. Valent, and P. Albersheim. 1976. Host-pathogen interactions X. Fractionation and biological activity of an elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae. Plant Physiol. 57: 760–765.Google Scholar
  7. 7.
    Deverall, B. 1977. Defense Mechanisms of Plants. Cambridge University Press, London.CrossRefGoogle Scholar
  8. 8.
    Grisebach, H. and J. Ebel. 1978. Phytoalexins, chemical defense substances of higher plants? Angew. Chem. Int. Ed. Engl. 17:635–647.Google Scholar
  9. 9.
    Ingham, J. L. 1972. Phytoalexins and other natural products as factors in plant disease resistance. Bot. Rev. 38: 343–424.Google Scholar
  10. 10.
    Keen, N. and B. Bruegger. 1977. Phytoalexins and chemicals that elicit their production in plants. In: Host Plant Resistance to Pests. (P. A. Hedin, ed.). ACS Symp. Ser. 62, Washington, D. C. pp. 1–26.CrossRefGoogle Scholar
  11. 11.
    Kue, J. 1972. Phytoalexins. Annu. Rev. Phytopathol. 10: 207–232.CrossRefGoogle Scholar
  12. 12.
    Kué, J. and W. Currier. 1976. Phytoalexins, plants, and human health. Adv. Chem. Ser. 149: 356–368.Google Scholar
  13. 13.
    VanEtten, H. and S. Pueppke. 1976. In: Biochemical Aspects of Plant-Parasitic Relationships. J. Friend and D. Threlfall, eds. Academic Press, London. pp. 239–389.Google Scholar
  14. 14.
    Keen, N. T., J. E. Partridge, and A. I. Zaki. 1972. Pathogen-produced elicitor of a chemical defense mechanism in soybeans monogenically resistant to Phytophthora megasperma var. sojae. Phytopathology 62: 768.Google Scholar
  15. 15.
    Bartnicki-Garcia, S. 1968. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu. Rev. Microbiol. 22: 87–108.CrossRefGoogle Scholar
  16. 16.
    Seitsma, J. H. and J. G. H. Wessels. 1977. Chemical analysis of the hyphal wall of Schizophyllum commune. Biochem. Biophys. Acta 496: 225–239.Google Scholar
  17. 17.
    Hahn, M. and P. Albersheim. 1978. Host-pathogen interactions XIV. Isolation and partial characterization of an elicitor from yeast extract. Plant Physiol. 62: 107–111.PubMedCrossRefGoogle Scholar
  18. 18.
    Cline, K., M. Wade, and P. Albersheim. 1978. Host-pathogen interactions XV. Fungal glucans which elicit phytoalexin accumulation in soybean also elicit the accumulation of phytoalexins in other plants. Plant Physiol. 62: 918–921.PubMedCrossRefGoogle Scholar
  19. 19.
    Ebel, J., B. Schaller-Hekeler, K.-H. Knobloch, E. Wellman, H. Grisebach and K. Hahlbrock. 1974. Coordinated changes in enzyme activities of phenylpropanoid metabolism during the growth of soybean cell suspension cultures. Biochem. Biophys. Acta 362: 417–424.Google Scholar
  20. 20.
    Zahringer, U., J. Ebel, and H. Grisebach. 1978. Induction of phytoalexin synthesis in soybean. Elicitor-induced increase in enzyme activities of flavonoid biosynthesis and incorporation of mevalonate into glyceollin. Arch. Biochem. Biophys. 188: 450–455.Google Scholar
  21. 21.
    Zähringer, U., J. Ebel, L. J. Mulheirn, R. L. Lyne, and H. Grisebach. 1979. Induction of phytoalexin synthesis in soybean. FEBS Lett. 101: 90–92.PubMedCrossRefGoogle Scholar
  22. 22.
    Dixon, R. A. and D. S. Bendall. 1978. Changes in the levels of enzymes of phenylpropanoid and flavonoid synthesis during phaseollin production in cell suspension cultures of Phaseolus vulgaris. Physiol. Plant Pathol. 13: 295–306.Google Scholar
  23. 23.
    Dixon, R. A. and C. J. Lamb. 1979. Stimulation of de novo synthesis of L-phenylalanine ammonia-lyase in relation to phytoalexin accumulation in Colletotrichum lindemuthianum elicitor-treated cell suspension cultures of French bean (Phaseolus vulgaris). Biochem. Biophys. Acta 586: 453–463.PubMedGoogle Scholar
  24. 24.
    Darvill, A., M. McNeil, and P. Albersheim. 1978. The structure of plant cell walls VIII. A new pectic polysaccharide. Plant Physiol. 62: 418–422.PubMedCrossRefGoogle Scholar
  25. 25.
    Darvill, J., M. McNeil, A. G. Darvill, and P. Albersheim. 1980. Structure of plant cell walls XI. Glucuronoarabinoxylan, a second hemicellulose in the primary cell walls of suspension-cultured sycamore cells. Plant Physiol. 66: 1135–1139.PubMedCrossRefGoogle Scholar
  26. 26.
    McNeil, M., A. G Darvill, and P. Albersheim. 1980. Structure of plant cell walls X. Rhamnogalacturonan I, a structurally complex pectic polysaccharide in the walls of suspension-cultured sycamore cells. Plant Physiol. 66: 1128–1134.PubMedCrossRefGoogle Scholar
  27. 27.
    Bailey, J. A. 1970. Pisatin production by tissue cultures of Pisum sativum L. J. Gen. Microbiol. 61: 409–415.Google Scholar
  28. 28.
    Hargreaves, J. A. and J. A. Bailey. 1978. Phytoalexin formation in cell suspensions of Phaseolus vulgaris in response to constitutive metabolites released by damaged bean cells. Physiol. Plant Pathol. 13: 89–100.Google Scholar
  29. 29.
    Hargreaves, J. A. and C. Selby. 1978. Phytoalexin formation in cell suspensions of Phaseolus vulgaris in response to an extract of bean hypocotoyls. Phytochemistry 17: 1099–1102.CrossRefGoogle Scholar
  30. 30.
    Stekoll, M. and C. A. West. 1978. Purification and properties of an elicitor of castor bean phytoalexin from culture filtrates of the fungus Rhizopus stolonifer. Plant Physiol. 61: 38–45.Google Scholar
  31. 31.
    Bateman, D. F. 1976. Plant cell wall hydrolysis by pathogens. In: Biochemical Aspects of Plant-Parasite Relationship. ( J. Friend and D. R. Threlfall, eds.). Academic Press, London. pp. 79–103.Google Scholar
  32. 32.
    Bateman, D. F. and H. G. Basham. 1976. Degradation of plant cell walls and membranes by microbial enzymes. In: Encyclopedia of Plant Physiology, New Series, Vol. 4, Physiological Plant Pathology. ( R. Heitefuss and P. H. Williams, eds.). Springer-Verlag, Berlin. pp. 316–355.Google Scholar
  33. 33.
    Gardner, J. M. and C. I. Kado. 1976. Polygalacturonic acid trans-eliminase in the osmotic shock fluid of Erwinia rubrifaciens: Characterization of the purified enzyme and its effect on plant cells. J. Bacteriol. 127: 451–460.PubMedGoogle Scholar
  34. 35.
    Ryan, C. A. 1978. Proteinase inhibitors in plant leaves: A biochemical model for pest-induced natural plant protection. Trends Biochem. Sci. July: 148–150.Google Scholar
  35. 36.
    Day, P. R. 1974. Genetics of Host-Parasite Interaction. Freeman, San Francisco.Google Scholar
  36. 37.
    Flor, H. H. 1956. The complementary genic systems in flax and flax rust. Advan. Genet. 8: 29–54.Google Scholar
  37. 38.
    Flor, H. H. 1971. Current status of the gene-forgene concept. Annu. Rev. Phytopathol. 9: 275–296.CrossRefGoogle Scholar
  38. 39.
    Hooker, A. L. and K. M. S. Saxena. 19717 Genetics of disease resistance in plants. Annu. Rev. Genet. 5: 407–423.Google Scholar
  39. 40.
    Ballon, C. E. 1974. Some aspects of the structure, immunochemistry and genetic control of yeast mannans. In: Advances in Enzymology, Vol. 40. ( A. Meister, ed.). Wiley, New York. pp. 239–270.Google Scholar
  40. 41.
    Ballou, C. E. and W. C. Raschke. 1974. Polymorphism of the somatic antigen of yeast. Science 184: 127–134.PubMedCrossRefGoogle Scholar
  41. 42.
    Biely, P., Z. Krâtkÿ and S. Bauer. 1976. Interaction of conconavalin A with external mannan-proteins of Saccharomyces cerevisiae. Eur. J. Biochem. 70: 75–81.PubMedCrossRefGoogle Scholar
  42. 43.
    Smith, W. L. and C. E. Ballou. 1974. Immunochemical characterization of the mannan component of the external invertase (ß-fructofuranosidase) of Saccharomyces cerevisiae). Biochemistry 13: 355–361.Google Scholar
  43. 44.
    Laviolette, F. A. and K. L. Athow. 1977. Three new physiologic races of Phytophthora megasperma var.sojae. Phytopathology 67: 267–268.Google Scholar
  44. 45.
    Ziegler, E. and P. Albersheim. 1977. Host-pathogen interactions XIII. Extracellular invertases secreted by three races of a plant pathogen are glycoproteins which possess different carbohydrate structures. Plant Physiol. 59: 1104–1110.PubMedCrossRefGoogle Scholar
  45. 46.
    Wade, M. and P. Albersheim. 1979. Race-specific molecules that protect soybeans from Phytophthora megasperma var. sojae. Proc. Natl. Acad. Sci. USA. 76: 4433–4437.Google Scholar
  46. 47.
    Jnn, K. and O. Wesphal. 1975. The Antigens. Academic Press, London.Google Scholar
  47. 48.
    Orskov, I., F. Orskov, B. Jann, and K. Jann. 1977. Serology, chemistry, and genetics of 0 and K antigens of Escherichia coli. Bactiol. Rev. 41: 667–710.CrossRefGoogle Scholar
  48. 49.
    Dudman, W. F. 1978. Structural studies of the extra-cellular polysaccharides of Rhizobium japonicum strains 71A, CC708 and CB1795. Carbohydr. Res. 66: 9–23.Google Scholar
  49. 50.
    Jansson, P.-E., L. Kenne, B. Lindberg, H. Ljunngren, J. Lönngren, U. Rudén, and S. Svensson. Demonstration of an octasaccharide repeating unit in the extracellular polysaccharide of Rhizobium meliloti by sequential degradation. J. Amer. Chem. Soc. 99: 3812–3815.Google Scholar
  50. 51.
    Johnston, A. W. B. and J. E. Beringer. 1977. Chromosomal recombination between Rhizobium species. Nature 267: 611–613.CrossRefGoogle Scholar
  51. 52.
    Vincent, J. M. 1977. A Treatise on Dinitrogen Fixation. Wiley, New York. pp. 277–366.Google Scholar
  52. 52.
    Vincent, J. M. 1977. A Treatise on Dinitrogen Fixation. Wiley, New York. pp. 277–366.Google Scholar
  53. 54.
    Hepper, C. M. 1978. Physiological studies on nodule formation. The characteristics and inheritance of abnormal nodulation of Trifolium pratense by Rhizobium leguminosarum. Ann. Bot. 42: 109–115.Google Scholar
  54. 55.
    Hepper, C. M. and L. Lee. 1979. Nodulation of Trifolium subterraneum by Rhizobium leguminosarum. Plant Soil 51: 441–445.Google Scholar
  55. 56.
    Mleczhowska, J., P. S. Nutman, and G. Bond. 1944. Note on the ability of certain strains of Rhizobia from peas and clover to infect each other’s host plants. J. Bacteriol. 48: 673–675.Google Scholar
  56. 57.
    Vincent, J. M. The Biology of Nitrogen Fixation. Amer. Elsevier, New York. pp. 265–341.Google Scholar
  57. 58.
    Yao, P. Y. and J. M. Vincent. 1969. Host specificity in the root hair “curling factor” of Rhizobium spp. Aust. J. Biol. Sci. 22: 413–423.Google Scholar
  58. 59.
    Bauer, W. D., T. V. Bhuvaneswari, A. J. Mort, and G. Turgeon. 1979. The initiation of infections in soybean by Rhizobium. 3. R. japonicum polysaccharide pretreatment induces root hair infectibility. Plant Physiol. (supplement) 63: 135.Google Scholar
  59. 60.
    Aspinall, G. 0. and A. Canas-Rodriquez. 1958. Sisal pectic acid. J. Chem. Soc. 4020.Google Scholar
  60. 61.
    Aspinall, G. O. and R. S. Fanshawe. 1961. Pectic substances from lucerne (Medicagi sativa) I. Pectic acid. J. Chem. Soc. ( C), 4215.Google Scholar
  61. 62.
    Aspinall, G. O., K. Hunt and I. M. Morrison. 1966. Polysaccharides of soybeans. Part II. Fractionation of hull cell-wall polysaccharides and the structure of a xylan. J. Chem. Soc. ( C), 1945–1949.Google Scholar
  62. 63.
    Barrett, A. J. and D. H. Northcote. 1965. Apple fruit pectic substances. Biochem. J. 94: 617–627.Google Scholar
  63. 64.
    Bacon, J. S. D. and M. V. Cheshire. 1971. Apiose and mono-0-methyl sugars as minor constituents of the leaves of deciduous trees and various other species. Biochem. J. 124: 555–562.Google Scholar
  64. 65.
    Liotta, A. S., C. Loudes, J. F. McKelvy, and D. T. Krieger. 1980. Biosynthesis of precursor corticotropin/endorphin-, corticotropin-, a-melanotropin-, ß-lipotropin-, and 0-endorphin-like material by cultured neonatal rat hypothalamic neurons. Proc. Natl. Acad. Sci. USA. 77: 1880–1884.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Peter Albersheim
    • 1
  • Michael McNeil
    • 1
  • Alan G. Darvill
    • 1
  • Barbara S. Valent
    • 1
  • Michael G. Hahn
    • 1
  • Borre K. Robertsen
    • 1
  • Per Åman
    • 1
  1. 1.Department of ChemistryUniversity of ColoradoBoulderUSA

Personalised recommendations