The Structure and Biosynthesis of Lipopolysaccharides and Glycoproteins

  • Alan D. Elbein
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 15)


The term recognition is defined by Webster as perceiving something clearly or perceiving something previously known. In that context, living cells are able to recognize various things in their environment, and this recognition must be one of the initial steps of many different cellular events.


Influenza Virus Kidney Cell Outer Core Bacterial Lipopolysaccharide Viral Glycoprotein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clarke, A. and B. Knox. 1976. Cell recognition in flowering plants. Quart. Rev. Biol. 53: 3–28.Google Scholar
  2. 2.
    Frazier, W. and L. Glaser. 1979. Surface components and cell recognition. Ann. Rev. Biochem. 48: 491–523.PubMedCrossRefGoogle Scholar
  3. 3.
    Gibbons, R. J. and J. van Houte. 1975. Bacterial adherence in oral microbial ecology. Ann. Rev. Microbiol. 19: 29–44.Google Scholar
  4. 4.
    Lippincott, B. B. and J. A. Lippincott. 1969. Bacterial attachment to a specific wound site as an essential stage in tumor initiation by Agrobacterium tumefaciens. J. Bacteriol. 97: 620–628.PubMedGoogle Scholar
  5. 5.
    Burnet, F. 1971. Self-recognition in colonial marine forms and flowering plants in relation to evaluation of immunity. Nature 232: 230–235.PubMedCrossRefGoogle Scholar
  6. 6.
    Sequeira, L. 1978. Lectins and their role in host-pathogen specificity. Ann. Rev. Phytopathol. 16: 453–481.CrossRefGoogle Scholar
  7. 7.
    Whatley, M. H., J. S. Bodwin, B. B. Lippincott and J. A. Lippincott. 1976. Role for Agrobacterium cell-envelope lipopolysaccharide in infection site attachment. Infect. Immun. 13: 1080–1083.PubMedGoogle Scholar
  8. 8.
    Sahlman, K. and G. Fahraeus. 1963. An electron microscope study of root-hair infection by Rhizobium. J. Gen. Microbiol. 33: 425–427.PubMedGoogle Scholar
  9. 9.
    Dazzo, F. B. and D. H. Hubbell. 1975. Antigenic differences between infective and noninfective strains of Rhizobium trifolii. Appl. Microbiol. 30: 172–177.PubMedGoogle Scholar
  10. 10.
    Schmidt, E. L. 1979. Initiation of plant root-microbe interactions. Ann. Rev. Microbiol. 33: 335–376.CrossRefGoogle Scholar
  11. 11.
    Weckesser, J. and G. Drews. 1979. Lipopolysaccharides of photosynthetic procaryotes. Ann. Rev. Microbiol. 33: 215–239.CrossRefGoogle Scholar
  12. 12.
    Osborn, M. J. 1969. Structure and biosynthesis of the bacterial cell wall. Ann. Rev. Microbiol. 38: 501–538.Google Scholar
  13. 13.
    Wright, A. and S. Kanegasaki. 1971. Molecular aspects of lipopolysaccharides. Physiol. Rev. 51: 748–784.PubMedGoogle Scholar
  14. 14.
    Rothfield, L. and M. Perlman-Kothencz. 1969. Synthesis and assembly of bacterial membrane components - A lipopolysaccharide-phospholipid-protein complex excreted by living bacteria. J. Mol. Biol. 44: 477–492.PubMedCrossRefGoogle Scholar
  15. 15.
    Romeo, D., A. Girard and L. Rothfield. 1970. Reconstitution of a functional membrane enzyme-system in a mono-molecular film 1. Formation of a mixed monolayer of lipopolysaccharide and phospholipid. J. Mol. Biol. 53: 475–490.PubMedCrossRefGoogle Scholar
  16. 16.
    Lis, H. and N. Sharon. 1978. Soybean agglutinin - A plant glycoprotein. J. Biol. Chem. 253: 3468–3476.Google Scholar
  17. 17.
    Sharon, N. and H. Lis. 1979. Comparative biochemistry of plant glycoproteins. Biochem. Soc. Trans. 7: 783–799.PubMedGoogle Scholar
  18. 18.
    Kornfeld, R. and S. Kornfeld. 1976. Comparative aspects of glycoprotein structure. Ann. Rev. Biochem. 45: 213–237.CrossRefGoogle Scholar
  19. 19.
    Elbein, A. D. 1979. The role of lipid-linked saccharides in the biosynthesis of complex carbohydrates. Ann. Rev. Plant Physiol. 30: 239–272.CrossRefGoogle Scholar
  20. 20.
    Waechter, C. J. and W. J. Lennarz. 1976. The role of polyprenol-linked sugars in glycoprotein synthesis. Ann. Rev. Biochem. 45: 95–112.PubMedCrossRefGoogle Scholar
  21. 21.
    Sanford, B. A., A. Shelokov and M. A. Ramsey. 1978. Bacterial adherence to virus-infected cells: A cell culture model of bacterial superinfection. J. Infect. Dis. 137: 176–181.PubMedCrossRefGoogle Scholar
  22. 22.
    Pan, Y. T., J. W. Schmitt, B. A. Sanford and A. D. Elbein. 1979. Adherence of bacteria to mammalian cells: Inhibition by tunicamycin and streptovirudin. J. Bacteriol. 139: 507–514.PubMedGoogle Scholar
  23. 23.
    Collins, J. K. and C. A. Knight. 1978. Purification of the influenza hemagglutinin glycoprotein and characterization of its carbohydrate components. J. Virology, 26: 457–467.PubMedGoogle Scholar
  24. 24.
    Thacz, J. and J. Lampen. 1975. Tunicamycin inhibition of polyisoprenyl-N-acetyl glucosaminyl pyrophosphate formation in calf liver microsomes. Biochem. Biophys. Res. Commun. 65: 248–257.CrossRefGoogle Scholar
  25. 25.
    Ericson, M., J. Gafford and A. D. Elbein. 1977. Tunicamycin inhibits G1cNAc-lipid formation in plants. J. Biol. Chem. 252: 7431–7433.PubMedGoogle Scholar
  26. 26.
    James, D. W., Jr. and A. D. Elbein. 1980. Effects of several tunicamycin-like antibiotics on glycoprotein biosynthesis in mung leaves and suspension-cultured soybean cells. Plant Physiol. 65: 460–464.PubMedCrossRefGoogle Scholar
  27. 27.
    Schwarz, R. T., J. N. Rohrschneider and M. F. G. Schmidt. 1976. Suppression of glycoprotein formation of Semliki forest, influenza, and avian sarcoma virus by tunicamycin. J. Virology 19: 782–791.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Alan D. Elbein
    • 1
  1. 1.Department of BiochemistryUniversity of Texas Health Science CenterSan AntonioUSA

Personalised recommendations