Epidemiology and Genetics of Hemolysin Formation in Escherichia coli

  • Werner Goebel
  • Angelica Noegel
  • Ursula Rdest
  • Dorothee Müller
  • Colin Hughes


Hemolysins or cytolysins are extracellular toxic proteins that disrupt the membranes of erythrocytes and other differentiated eucaryotic cells.1 Most hemolysins seem to have little or no effect on procaryotic cells. The hemolytic phenotype is frequently associated with pathogenic strains of a given bacterial species. There is clear evidence for the involvement in pathogenesis for cytolysins in Gram-positive pathogenic bacteria, such as streptolysins produced by Streptococcus pyogenes, α-, β-, γ- and δ-toxins from Staphylococcus aureus, θ-toxin from Clostridium perfringens, listeriolysins from Listeria monocytogenes and others.These toxins all of which can be considered as hemolysins disrupt eucaryotic membranes by different modes of action, which are only partially understood. Whereas some cytolysins act as enzymes, like the staphylococcal 3-toxin which is a sphingomyelinase,2 others like the “SH-activated cytotoxins” including streptolysin O, C. perfringens θ-toxin, cereolysin (Bacillus cereus) and listeriolysin disrupt eucaryotic membranes by a non-enzymatic mode of action, using probably cholesterol as receptor.3


Listeria Monocytogenes Coli Strain Clostridium Perfringens Hemolysin Production Procaryotic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Wadstrom, in: “Bacterial Toxins and Cell Membranes,” J. Jeljaszewicz and T. Wadström, eds., Academic Press, London (1978).Google Scholar
  2. 2.
    M. Rogolsky, Microbiol. Rev. 43: 320 (1978).Google Scholar
  3. 3.
    C.J. Smyth and J.L. Duncan, in: “Bacterial Toxins and Cell Membranes,” J. Jeljaszewicz and T. Wadstrom, eds., Academic Press, London (1978).Google Scholar
  4. 4.
    J. Jorgensen et al., J. Med. Microbiol. 9: 173 (1976).PubMedCrossRefGoogle Scholar
  5. 5.
    B.H. Minshew, J. Jorgensen, G.W. Counts, and S. Falkow, Infect.Immun. 20: 50 (1978).PubMedGoogle Scholar
  6. 6.
    J.M. DeBoy, J.K. Wachsmuth, and B.R. Davis, J. Clin. Microbiol. 12: 193 (1980).Google Scholar
  7. 7.
    E.M. Cooke, J. Path. Bacteriol. 95: 101 (1968).CrossRefGoogle Scholar
  8. 8.
    D.G. Evans, D.J. Evans, W.S. Tjoa, and H.L. DuPont, Infect. Immun. 19: 727 (1978).PubMedGoogle Scholar
  9. 9.
    D.G. Evans and D.J. Evans, Infect. Immun. 21: 638 (1978).PubMedGoogle Scholar
  10. 10.
    W. Goebel and H. Schrempf, J. Bacteriol. 106: 311 (1971).PubMedGoogle Scholar
  11. 11.
    W. Goebel, B. Royer-Pokora, W. Lindenmai er, and H. Bujard, J. Bacteriol. 118: 964 (1974).PubMedGoogle Scholar
  12. 12.
    S. LeMinor and E. LeCoueffic, Ann. Microbiol. (Paris) 126: 313 (1975).Google Scholar
  13. 13.
    C. Monti-Bragadin, L. Samer, G.D. Rottini, and B. Pani, J. Gen. Microbiol. 86: 367 (1975).PubMedCrossRefGoogle Scholar
  14. 14.
    F. De la Cruz, J.C. Zabala, and J.M. Ortiz, Plasmid 2: 507 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    W. Springer and W. Goebel, J. Bacteriol. 144: 53 (1980).PubMedGoogle Scholar
  16. 16.
    A. Noegel, U. Rdest, and W. Goebel, J. Bacteriol. (in press).Google Scholar
  17. 17.
    F. De la Cruz, D. Müller, J.M. Ortiz, and W. Goebel, J. Bacteriol. 143: 825 (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Werner Goebel
    • 1
  • Angelica Noegel
    • 1
  • Ursula Rdest
    • 1
  • Dorothee Müller
    • 1
  • Colin Hughes
    • 1
  1. 1.Institut fur GenetikMikrobiologie der UniversitätWürzburgWest Germany

Personalised recommendations