Host Functions Required for Transposition of Tn5 from λ b221 cI857 rex::Tn5

  • Masanosuke Yoshikawa
  • Chihiro Sasakawa
  • Yuko Uno


By assaying transposition of Tn5 from λ b221 cI857 rex: :Tn5 (Berg,1977)(abbreviated as λ::Tn5) in PolA-proficient and deficient cells, both DNA polymerase and 5′ to 3′ exonuclease activities of DNA polymerase I of Escherichia coli K12 have been shown to be required for transposition of Tn5. Such a requirement could not clearly be observed in three other experiments in which the transposon donor replicon had existed in cells before transposition was assayed presumably because a hypothetical repressor-regulated protein encoded by the transposon itself rather than DNA polymerase I became rate-limiting in the overall transposition process. One polA mutant was found among more than 50 transposition-deficient mutants isolated by the ′ ::Tn5 method. Preliminary experiments also suggested that several host functions related to DNA repair or recombination were involved in determining the frequency of transposition of Tn5.


Transposable Element Kanamycin Resistance Exonuclease Activity Conjugative Plasmid polA Mutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arthur, A., and Sherratt, D.1979. Dissection of the transposition process:A transposon-encoded site-specific recombination system, Mol. Gen. Genet.,175: 267.PubMedCrossRefGoogle Scholar
  2. Beck, C.F., Moyed, H., and Ingraham, J.L.1980. The tetracycline-resist-ance transposon Tn10 inhibits translocation of Tn10, Mol. Gen. Genet.,179: 453.PubMedCrossRefGoogle Scholar
  3. Bennett, P.M., Grinsted, J., and Richmond, N.H.1977. Transposition of TnA does not generate deletions. Mol. Gen.Genet.,154: 205.PubMedCrossRefGoogle Scholar
  4. Berg, D.E.1977, Insertion and excision of the transposable kanamycin resistance determinant Tn5,in:“DNA insertion elements, plasmids and episomes,” A.I. Bukhari, J.A. Shapiro, and S.L. Adhya, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor.Google Scholar
  5. Biek, D., and Roth, J. R. 1980. Régulat ion of Tn5 transposition in Salmonella typhimurium, Proc. Natl. Acad. Sci.,U.S.A.,77: 6047.PubMedCrossRefGoogle Scholar
  6. Calos, M.P., Johnsrud, L., and Miller, J.H.1978. DNA sequences at the integration sites of the insertion element IS1, Cell, 13: 411.PubMedCrossRefGoogle Scholar
  7. Calos, M.P., and Miller, J.H.1980.Transposable elements, Cell, 20: 579.PubMedCrossRefGoogle Scholar
  8. Chou, J., Lemaux, P.G., Casadaban, M.J., and Cohen, S.N.1979. Transposition protein of Tn3: identification of an essential repressor-control-led gene product, Nature(London), 282: 801.CrossRefGoogle Scholar
  9. Cohen, S.N., Casadaban, M.J., Chou, J., and Tu, C.P.D. 1978. Studies, of the specificity and control of transposition of the Tn3 elements, Cold Spring Harbor Symp. Quant. Biol.,43: 1247.CrossRefGoogle Scholar
  10. Ghosali, D., Sommer, H., and Saedler, H. 1979. Nucleotide sequence of the transposable element IS2, Nucleic Acid Res., 6: 1111.CrossRefGoogle Scholar
  11. Gill, G., Heffron, F., Dougan, G., and Falkow, S. 1978. Analysis of sequence transposed by complementation of two classes of transposition-deficient mutants of Tn3, J. Bacteriol., 136: 742.PubMedGoogle Scholar
  12. Gill, R.E., Heffron, F., and Falkow, S.1979. Identification of the protein coded by the transposable element Tn3 which is required for its transposition, Nature(London), 282: 797.CrossRefGoogle Scholar
  13. Grindley, N.D.F.1978. IS1 generates duplication of a nine base sequence at its target site, Cell,13: 419.Google Scholar
  14. Grindley, N.D.F., and Sherratt, D.J. 1978. Sequence analysis at ISl sites:models for transposition,Cold Spring Harbor Symp. Quant. Biol., 43: 1257.CrossRefGoogle Scholar
  15. Habermann, P., Klaer, R., Kühn, S., and Starlinger, P. 1979. IS4 is formed between eleven or twelve base pair duplication, Mol.Gen.Genet., 175: 363.CrossRefGoogle Scholar
  16. Jacob, F., and Wollman, E.L.1956. Sur les processus de conjugaison et de recombinaison chez Escherichia coli.I. L’induction par conjugaison ou induction zygotique,Ann. Inst. Pasteur, 91: 486.Google Scholar
  17. Johnsrud, L., Calos, M.P., and Miller, J.H.1978.The transposon Tn9 generates a 9 bp repeated sequence during integration, Cell, 13: 1209.CrossRefGoogle Scholar
  18. Klaer, R., Pfeiffer, D., and Starlinger, P. 1980. IS4 is still found in its chromosomal site after transposition to galT, Mol.Gen. Genet.,178: 281.PubMedCrossRefGoogle Scholar
  19. Kleckner, N. 1977.Transposable elements in procaryotes,Cell,11: 11.PubMedCrossRefGoogle Scholar
  20. Kornberg, A.1980.“DNA replication,” Freeman, San Francisco.Google Scholar
  21. Kühn, S., Frits, H.J., and Starlinger, P.1979.Close vicinity of IS1 integration sites in the leader sequence of the gal operon of E.coli, Mol.Gen.Genet.,167: 235.PubMedCrossRefGoogle Scholar
  22. Ljungquist, E.,and Bukhari, A.I.1977. State of prophage Mu DNA upon induction, Proc. Natl. Acad. Sci.,U.S.A., 74: 3143.PubMedCrossRefGoogle Scholar
  23. Meyer, R., Boch, G., and Shapiro, J.1979. Transposition of DNA inserted into deletions of the Tn5 kanamycin resistance element, Mol.Gen. Genet., 171: 7.PubMedCrossRefGoogle Scholar
  24. Oka, A., Nomura, N., Sugimoto, K., Sugisaki, H.,and Takanami, M. 1978. Nucleotide sequence at the insertion site of a kanamycin transposon, Nature(London), 276: 845.CrossRefGoogle Scholar
  25. Pardee, A.B., Jacob, F., and Monod, J. 1959. The genetic control and cytoplasmic expression of “inducibility” in the systhesis of β-galactosidase by E.coli. J. Molec. Biol., 1: 165.CrossRefGoogle Scholar
  26. Rothstein, S.J., Jorgensen, R.A., Postel, K., and Reznikoff, W.S.1980. The inverted repeates of Tn5 are functionally different; Cell, 19: 795.PubMedCrossRefGoogle Scholar
  27. Sasakawa, C., and Yoshikawa, M.1978. Requirements for suppression of a dnaG mutation by an I-type plasmid, J. Bacteriol., 133: 485.PubMedGoogle Scholar
  28. Sasakawa, C., and Yoshikawa, M. 1980. Transposon (Tn5)-mediated suppressive integration of ColEl derivatives into the chromosome of Escherichia coli K12(dnaA), Biochem.Biophys.Res.Communs.,96: 1357.CrossRefGoogle Scholar
  29. Schaller, H.1978. The intergenic region and the origins for filamentous phage DNA replication, Cold Spring Harbor Symp.Quant.Biol., 43: 401.Google Scholar
  30. Shapiro, J.A. 1979. A molecular model for the transposition and replication of bacteriophage Mu and other transposable elements, Proc. Natl.Acad.Sci.,U.S.A.,76: 1933.PubMedCrossRefGoogle Scholar
  31. Starlinger, P. 1980. IS elements and transposons, Plasmid, 3: 241.PubMedCrossRefGoogle Scholar
  32. Stocker, B.A.D., Smith, S.M.,and Ozeki, H.1963.High infectivity of Salmonella typhimurium newly infected by the coll factor, J.Geu. Microbiol.,30: 201.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Masanosuke Yoshikawa
    • 1
  • Chihiro Sasakawa
    • 1
  • Yuko Uno
    • 1
  1. 1.Institute of Medical ScienceUniversity of Tokyo 4-6-1, Shiroganedai-machi Minato-kuTokyoJapan

Personalised recommendations