Advertisement

Trimethoprim-Resistant Bacteria in Hospital and in the Community: Spread of Plasmids and Transposons

  • Naomi Datta
  • Hilary Richards

Abstract

Trimethoprim is a very effective synthetic antibacterial drug that was introduced for use in human and veterinary medicine about 10 years ago in Europe (7 years in the US). Until recently it has been used always in conjunction with a sulfonamide. Trimethoprim and sulfonamides act synergistically, at different points upon the folic acid cycle of bacteria and using both drugs together should prevent the emergence of resistant mutants1. Trimethoprim-sulfonamide preparations are effective against a wide range of bacteria and have been extensively used in treating urinary, respiratory and, to a lesser extent, gastrointestinal infections in hospitals and in the community.

Keywords

Urinary Tract Infection Haemophilus Influenzae Urinary Infection Neisseria Gonorrhoeae Dihydrofolate Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. R. M. Bushby,.Combined antibacterial action in vitro of trimethoprim and sulfonamides. Postgrad. Med. J. 45:(Suppl) 10–16 (1969).PubMedGoogle Scholar
  2. 2.
    N. Datta, Drug resistance and R factors in the bowel bacteria of London patients before and after admission to hospital, Brit. med. J. 2: 407–411 (1969).PubMedCrossRefGoogle Scholar
  3. 3.
    R. N. Grüneberg, The use of co-trimoxazole in sulfonamide resistant Escherichia coli urinary tract infection, J. antimicrob. Chemother. 1: 305–310 (1975).PubMedCrossRefGoogle Scholar
  4. 4.
    J. M. T. Hamilton-Miller, Mechanisms and distribution of bacterial resistance to diaminopyrimidines and sulfonamides, J. antimicrob. Chemother. 5:(suppl. B) 6l–T3 (1979).Google Scholar
  5. 5.
    E. L. Lewis, and R. W. Lacey, Present significance of resistance to trimethoprim and sulfonamides in coliforms, Staphylococcus aureus and Streptococcus faecalis, J. Clin. Path. 26: 175–180 (1972).CrossRefGoogle Scholar
  6. 6.
    R. W. Lacey, V. L. Lord, H. K. W. Gunasekera, P. J. Lieberman, and D. E. A. Luxtpn, Comparison of trimethoprim alone with trimethoprim-sulfamethoxazole in the treatment of respiratory and urinary infections with particular reference to selection of trimethoprim resistance, Lancet 1: 1270–1273 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    A. J. Howard, C. J. Hince, and J. D. Williams, Antibiotic resistance in Streptococcus pneumoniae and Haemophilus influenzae. Report of a study group on bacterial resistance, Brit, med. J. 1: 1657–1660 (1978).CrossRefGoogle Scholar
  8. 8.
    M. P. Fleming, N. Datta, and R. N. Grüneberg, Trimethoprim resistance determined by R factors, Brit, med. J. 1: 726–728 (1972).CrossRefGoogle Scholar
  9. 9.
    S. G. B. Amyes, and J. T. Smith, R-factor trimethoprim resistance mechanism: an insusceptible target site, Biochem. Biophys. Res. Commn. 58: 412–418 (1974).CrossRefGoogle Scholar
  10. 10.
    O. Sköld, and A. Widh, A new dihydrofolate reductase with low trimethoprim sensitivity induced by an R factor mediating high resistance to trimethoprim, J. biol. Chem. 249: 4324–4325 (1974).PubMedGoogle Scholar
  11. 11.
    K. H. Pattishall, J. Acar, J. J. Burchall, F. W. Goldstein, and R. J. Harvey, Two distinct types of trimethoprim-resis-tant dihydrofolate reductase specified by R plasmids of different compatibility groups, J. biol. Chem. 252: 2319–2323 (1977).PubMedGoogle Scholar
  12. 12.
    P. T. Barth, N. Datta, R. W. Hedges, and N. J. Grinter, Transposition of a deoxyribonucleic acid sequence encoding trimethoprim and streptomycin resistance from R483 to other replicons, J. Bact. 125: 800–810 (1976).PubMedGoogle Scholar
  13. 13.
    J. A. Shapiro, and P. Sporn, Transposon Tn402: a new trans-posable element determining trimethoprim resistance that inserts into bacteriophage lambda, J. Bact. 129: l632–1635 (1977).Google Scholar
  14. l4.
    A. W. Asscher, E. R. Verrier-Jones, K. Verrier-Jones, R. Mackenzie, and L. A. Williams, Bacteriologic follow-up of schoolgirls with untreated covert bacteruria, Kidney International l6: 92 (1979).Google Scholar
  15. 15.
    E. J. Stokes, and P. M. Waterworth, Antibiotic sensitivity tests by diffusion methods, Association of Clinical Pathologists Broadsheet, 55: 1–12, British Medical Association, London (1972).Google Scholar
  16. 16.
    N. Datta, S. Dacey, V. Hughes, S. Knight, H. Richards, G. Williams, M. Casewell, and K. P. Shannon, Distribution of genes for trimethoprim and gentamicin resistance in bacteria and their plasmids in a general hospital, J. gen. Microbiol. 118: 495–508 (1980).PubMedGoogle Scholar
  17. 17.
    P. T. Barth, and N. Datta, Two naturally occurring transposons indistinguishable from Tn7, J. gen. Microbiol. 102: 129–134 (1977).PubMedCrossRefGoogle Scholar
  18. 18.
    N. Datta, V. M. Hughes, M. E. Nugent, and H. Richards, Plasmids and transposons and their stability and mutability in bacteria isolated during an outbreak of hospital infection, Plasmid 2: 182–196 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    J. L. Harkness, F. M. Anderson, and N. Datta, R factors in urinary tract infection, Kidney International 8: S130–S133 (1975).Google Scholar
  20. 20.
    R. N. Grüneberg, Susceptibility of urinary pathogens to various antimicrobial substances: a four year study, J. Clin. Path. 29: 292–295 (1976).PubMedCrossRefGoogle Scholar
  21. 21.
    R. N. Grüneberg, Antibiotic sensitivities of urinary pathogens 1971-1978, J. Clin. Path. 33: 853–856 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    N. Datta, and R. W. Hedges, Trimethoprim resistance conferred by W plasmids in Enterobacteriaceae, J. gen. Microbiol. 72: 349–356 (1972)PubMedCrossRefGoogle Scholar
  23. 23.
    N. Datta, M. Nugent, S. G. B. Amyes, and P. McNeilly, Multiple mechanisms of trimethoprim resistance in strains of Escherichia coli from a patient treated with long-term co-trimoxazole, J. antimicrob. Chemother. 5: 399–406 (1979).PubMedCrossRefGoogle Scholar
  24. 24.
    R. S. Jobanputra, and N. Datta, Trimethoprim resistance factors in enterobacteria from clinical specimens, J. med. Microbiol. 7: 169–177 (1974).PubMedCrossRefGoogle Scholar
  25. 25.
    H. Richards, N. Datta, C. Wray, and W. J. Sojka, Trimethoprim resistance plasmids and transposons in Salmonella, Lancet 2: 1194–1195 (1978).PubMedCrossRefGoogle Scholar
  26. 26.
    H. W. Smith, Antibiotic-resistant Escherichia coli in market pigs in 1956-1979; the emergence of organisms with plasmid-borne trimethoprim resistance, J. Hyg., Camb. 84: 467–477 (1980).CrossRefGoogle Scholar
  27. 27.
    M. E. Fling, and L. P. Elwell, Protein expression in Escherichia coli minicells containing recombinant plasmids specifying trimethoprim-resistant dihydrofolate reductase, J. Bact. l41: 779–785 (1980).Google Scholar
  28. 28.
    Anonymous, Bacterial resistance to trimethoprim, Brit, med. J. 281: 571–572 (1980).CrossRefGoogle Scholar
  29. 29.
    N. J. Pearson, K. J. Towner, A. M. McSherry, W. R. Cattell, and F. O’Grady, Emergence of trimethoprim-resistant enterobacteria in patients receiving long-term co-trimoxazole for the control of intractable urinary tract infection, Lancet 2: 1205–1209 (1979).PubMedCrossRefGoogle Scholar
  30. 30.
    M. P. Calos, and J. H. Miller, Transposable elements: review, Cell 20: 579–595 (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Naomi Datta
    • 1
  • Hilary Richards
    • 1
  1. 1.Department of BacteriologyRoyal Postgraduate Medical SchoolLondonEngland

Personalised recommendations