Structure and Function of the Replication Origin Region of the Resistance Factors R100 and R1

  • Karen Armstrong
  • Jonathan Rosen
  • Thomas Ryder
  • Eiichi Ohtsubo
  • Hisako Ohtsubo


Rl and R100 are large complex plasmids, approximately 90 kb in size, that code for multiple antibiotic resistance and functions involved in conjugal transfer of plasmid DNA.1,2 Both Rl and R100 belong to the FII plasmid incompatability group,3 indicating that the control of DNA replication in these plasmids is similar. Heteroduplex studies have confirmed this relationship by showing that the regions of Rl and R100 that are required for autonomous DNA replication have great sequence homology.4 This region is about 2.5 kb in length for R100, and, in addition to the replication origin,5,6,7 encodes at least one function that is required for replication. Part of this 2.5 kb replication region also encodes functions involved in plasmid incompatibility and copy number control.6 Studies with Rl have led to very similar conclusions.8


Resistance Factor Replication Origin Origin Region Multiple Antibiotic Resistance Code Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Meynell, G.G. Meynell, and N. Datta, Phylogenetic relationships of drug resistance factors and other transmissible bacterial plasmids, Bact. Rev. 32: 55 (1968).PubMedGoogle Scholar
  2. 2.
    R. Nakaya, A. Nakamura, and T. Murata, Resistance transfer agents in Shigella, Biochem. Biophys. Res. Commun. 3: 654 (1960).PubMedCrossRefGoogle Scholar
  3. 3.
    N. Datta, Epidemiology and classification of plasmids, in “Microbiology 1974”, D. Schlessinger, ed., American Society for Microbiology, Washington, D.C. (1974).Google Scholar
  4. 4.
    E. Ohtsubo, M. Rosenbloom, H. Schrempf, W. Goebel, and J. Rosen, Site-specific recombination involved in the generation of small plasmids, Mol. Gen. Genet. 159: 131 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    E. Ohtsubo, J. Feingold, H. Ohtsubo, S. Mickel, and W. Bauer, Unidirectional replication of three small plasmids derived from R factor R12 in Escherichia coli, Plasmids 1: 8 (1977).CrossRefGoogle Scholar
  6. 6.
    D.P. Taylor and S.N. Cohen, Structural and functional analysis of cloned segments containing the replication and incompa-tibility regions of a miniplasmid derived from a copy number mutant of NRl, J. Bacteriol. 137: 92 (1979).PubMedGoogle Scholar
  7. 7.
    T. Miki, A.M. Easton, and R.H. Rownd, Cloning of replication, incompatibility, and stability functions of R plasmid NR1, J. Bacteriol. 141: 87 (1980).PubMedGoogle Scholar
  8. 8.
    R. Kollek, W. Oertel, and W. Goebel, Isolation and characterization of the minimal fragment required for autonomous replication (“basic replicon”) of a copy mutant (pKN102) of the antibiotic resistance factor Rl, Mol. Gen. Genet. 162:51, (1978).Google Scholar
  9. 9.
    S. Mickel and W. Bauer, Isolation by tetracycline selection of small plasmids derived from R-factor R12 in Escherichia coli K-12, J. Bacteriol. 127: 644 (1976).PubMedGoogle Scholar
  10. 10.
    T.B. Ryder, J.I. Rosen, H. Ohtsubo, and E. Ohtsubo, Mechanisms of replication control based on nucleotide sequence comparison of two related plasmids of Escherichia coli, J. Bacteriol., In press (1981).Google Scholar
  11. 11.
    J. Rosen, T. Ryder, H. Inokuchi, H. Ohtsubo, and E. Ohtsubo, Genes and sites involved in replication and incompatibility of an R100 plasmid derivative based on nucleotide sequence analysis. Mol, Gen. Genet. 179: 527 (1980).Google Scholar
  12. 12.
    J. Rosen, H. Ohtsubo, and E. Ohtsubo, The nucleotide sequence of the region surrounding the replication origin, of an R100 resistance factor derivative, Mol, Gen. Genet. 171:277, (1979).Google Scholar
  13. 13.
    L. Silver, M. Chandler, E.B. delaTour, and L. Caro, Origin and direction of replication of the drug resistance plasmid R100 and of a resistance transfer factor derivative in synchronized cultures, J. Bacteriol. 131:929, (1977).Google Scholar
  14. 14.
    K. Sugimoto, A. Oka, H. Sugisaki, M. Takanami, A. Nishimura, Y. Yasuda, and Y. Hirota, Nucleotide sequence of Escherichia coli K-12 replication origin, Proc. Natl. Acad. Sci. U.S.A. 76: 575 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    J.W. Zyskind and D.W. Smith, Nucleotide sequence of the Salmonella typhumurium origin of DNA replication, Proc. Natl. Acad, Sci, U.S.A. 77: 2460 (1980).CrossRefGoogle Scholar
  16. 16.
    G. Hobum, R. Grosschedl, M. Lusky, G. Sherer., E. Scheartz, and H. Kössel, Functional analysis of the replicator structure of lambdoid bacteriophage DNAs, Cold Spring Harbor Symp. Quant. Biol. 43: 165 (1978).CrossRefGoogle Scholar
  17. 17.
    J. Rosen, T. Ryder, H. Ohtsubo, and E. Ohtsubo, Transcriptional involvement in replication, incompatibility, and copy number control of two resistance plasmid derivatives, Submitted (1981).Google Scholar
  18. 18.
    P. Tegtmeyer, M. Schwartz, J.K. Collins, and K. Rundell, Regulation of tumor antigen synthesis by Simian Virus 40 gene A, J. Virol. 16: 168 (1975).PubMedGoogle Scholar
  19. 19.
    K. Armstrong and W. Bauer, Polypeptides produced by the mini-resistance plasmid pSMl, In preparation (1981).Google Scholar
  20. 20.
    F. Lee and C. Yanofsky, Transcription termination at the trp operon attenuators of Escherichia coli and Salmonella typhimurium RNA secondary structure and regulation of termination, Proc. Natl. Acad. Sci. U.S.A. 74:4365, (1977).Google Scholar
  21. 21.
    T. Itoh and J. Tomizawa, Formation of an RNA primer for initia-tion of replication of ColEl DNA by ribonuclease H, Proc. Natl. Acad. Sci. U.S.A. 77: 2450 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    H.I. Adler, W.D. Fisher, A. Cohen, and A.A. Hardigree, Minia-ture Escherichia coli cells deficient in DNA, Proc. Natl. Acad. Sci. U.S.A. 57: 321 (1967).PubMedCrossRefGoogle Scholar
  23. 23.
    V. Hershfield, H.W. Boyer, C. Yanofsky, M.A. Lovett, and D. Helinski, Plasmid ColEl as a molecular vehicle for cloning and amplification of DNA, Proc. Natl. Acad. Sci. U.S.A. 71: 3455 (1974).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Karen Armstrong
    • 1
  • Jonathan Rosen
    • 1
  • Thomas Ryder
    • 1
  • Eiichi Ohtsubo
    • 1
  • Hisako Ohtsubo
    • 1
  1. 1.Department of Microbiology, School of MedicineState University of New YorkStony BrookUSA

Personalised recommendations