Advertisement

Plasmids of the Gonococcus

  • P. Frederick Sparling
  • Gour Biswas
  • James Graves
  • Eleanore Blackman

Abstract

There are at least four naturally-occurring plasmids in the gonococcus (Table 1). This paper will review the structure, origins and functions of these plasmids, insofar as known or can be reasonably inferred. Certain hybrid plasmids which have been of particular interest in delineating early steps in entry of DNA into competent gonococci are also discussed.

Keywords

Outer Membrane Protein Neisseria Gonorrhoeae Conjugal Transfer Hybrid Plasmid Cryptic Plasmid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. W. Mayer, K. K. Holmes, and S. Falkow, Characterization of plasmid deoxyribonucleic acid from Neisseria gonorrhoeae, Infect. Immun. 10: 712 (1974).PubMedGoogle Scholar
  2. 2.
    P. W. Stiffler, S. A. Lerner, M. Bohnhoff, and J. A. Morello, Plasmid deoxyribonucleic acid in clinical isolates of Neisseria gonorrhoeae, J. Bacteriol. 122: 1293 (1975).PubMedGoogle Scholar
  3. 3.
    G. Biswas, S. Comer, and P. F. Sparling, Chromosomal location of antibiotic resistance genes in Neisseria gonorrhoeae, J. Bacteriol. 125: 1207 (1976).PubMedGoogle Scholar
  4. 4.
    M. Roberts, L. P. Elwell, and S. Falkow, Molecular characterization of two beta-lactamase-specifying plasmids isolated from Neisseria gonorrhoeae, J. Bacteriol. 131: 557 (1977).PubMedGoogle Scholar
  5. 5.
    T. E. Sox, W. Mohammed, and P. F. Sparling, Transformation-derived Neisseria gonorrhoeae plasmids with altered structure and function, J. Bacteriol. 138: 510 (1979).PubMedGoogle Scholar
  6. 6.
    T. E. Sox, W. Mohammed, E. Blackman, G. Biswas, and P. F. Sparling, Conjugative plasmids in Neisseria gonorrhoeae, J. Bacteriol. 134: 278 (1978).PubMedGoogle Scholar
  7. 7.
    F. C. Tenover, L. W. Mayer, and F. E. Young, Physical map of the conjugal plasmid of Neisseria gonorrhoeae, Infect. Immun. 29: 181 (1980).PubMedGoogle Scholar
  8. 8.
    M. Roberts, P. Piot, and S. Falkow, The ecology of gonococcal plasmids, J. Gen. Microbiol. 114: 491 (1979).PubMedCrossRefGoogle Scholar
  9. 9.
    R. S. Foster and G. C. Foster, Electrophoretic comparison of endonuclease-digested plasmids from Neisseria gonorrhoeae, J. Bacteriol. 126: 1297 (1976).PubMedGoogle Scholar
  10. 10.
    J. K. Davies and S. Normark, A relationship between plasmid structure, structural lability, and sensitivity to site-specific endonucleases in Neisseria gonorrhoeae, Molec. gen. Genet. 177: 251 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    L. P. Elwell, M. Roberts, L. W. Mayer, and S. Falkow, Plasmid-mediated beta-lactamase production in Neisseria gonorrhoeae, Antimicrob. Agents Chemother. 11: 528 (1977).PubMedCrossRefGoogle Scholar
  12. 12.
    P. L. Perine, C. Thornsberry, W. Schalla, J. Biddle, M. S. Siegel, K.-H. Wong, and S. E. Thompson, Evidence for two distinct types of penicillinase-producing Neisseria gonorrhoeae, Lancet 2: 993 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    P. F. Sparling, T. E. Sox, W. Mohammed, and L. F. Guymon, Antibiotic resistance in the gonococcus: Diverse mechaisms of coping with a hostile environment, in “Immuno-biology of Neisseria gonorrhoeae,” G. F. Brooks, E. C. Gotschlich, K. K. Holmes, W. D. Sawyer, and F. E. Young, eds., American Society for Microbiology, Washington, D.C. (1978).Google Scholar
  14. 14.
    P. F. Sparling, Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance, J. Bacteriol. 92: 1364 (1966).PubMedGoogle Scholar
  15. 15.
    R. Laufs, P.-M. Kaulfers, G. Jahn, and U. Teschner, Molecular characterization of a small Haemophilus influenzae plasmid specifying β-lactamase and its relationship to R factors from Neisseria gonorrhoeae, J. Gen. Microbiol. 111: 223 (1979).PubMedCrossRefGoogle Scholar
  16. 16.
    A. Percival and C. A. Hart, Rationale for antimicrobial therapy of infections caused by multiply resistant Neisseria gonorrhoeae, in “Immunobiology of Neisseria gonorrhoeae,” G. F. Brooks, E. C. Gotschlich, K. K. Holmes, W. D. Sawyer, and F. E. Young, eds., American Society for Microbiology, Washington, D.C. (1978).Google Scholar
  17. 17.
    C. Thornsberry, J. W. Biddle, P. L. Perine, and M. S. Siegel, Susceptibility of Neisseria gonorrhoeae from the United States and the Far East (β-lactamase negative and positive) to antimicrobial agents, in “Immunobiology of Neisseria gonorrhoeae,” G. F. Brooks, E. C. Gotschlich, K. K. Holmes, W. D. Sawyer, and F. E. Young, eds., American Society for Microbiology, Washington, D.C. (1978).Google Scholar
  18. 18.
    B. I. Eisenstein, T. Sox, G. Biswas, E. Blackman, and P. F. Sparling, Conjugal transfer of the gonococcal penicillinase plasmid, Science 195: 998 (1977).PubMedCrossRefGoogle Scholar
  19. 19.
    G. D. Biswas, E. Y. Blackman, and P. F. Sparling, High-frequency conjugal transfer of a gonococcal penicillinase plasmid, J. Bacteriol. 143: 1318 (1980).PubMedGoogle Scholar
  20. 20.
    M. Roberts and S. Falkow, Plasmid-mediated chromosomal gene transfer in Neisseria gonorrhoeae, J. Bacteriol. 134: 66 (1978).PubMedGoogle Scholar
  21. 21.
    L. Norlander, J. Davies, and S. Normark, Genetic exchange mechanisms in Neisseria gonorrhoeae, J. Bacteriol. 138: 756 (1979).PubMedGoogle Scholar
  22. 22.
    V. I. Steinberg and I. D. Goldberg, On the question of chromosomal gene transfer via conjugation in Neisseria gonorrhoeae, J. Bacteriol. 142: 350 (1980).PubMedGoogle Scholar
  23. 23.
    T. J. Dougherty, A. Asmus, and A. Tomasz, Specificity of DNA uptake in genetic transformation of gonococci, Biochem. Biophys. Res. Commun. 86: 97 (1979).PubMedCrossRefGoogle Scholar
  24. 24.
    K. L. Sisco and H. O. Smith, Sequence-specific DNA uptake in Haemophilus transformation, Proc. Natl. Acad. Sci. USA 76: 972 (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    D. B. Danner, R. A. Deich, K. L. Sisco, and H. O. Smith, An eleven base pair sequence determines the specificity of DNA uptake in Haemophilus transformation, Gene 11: 311 (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • P. Frederick Sparling
    • 1
  • Gour Biswas
    • 1
  • James Graves
    • 1
  • Eleanore Blackman
    • 1
  1. 1.Departments of Medicine and BacteriologyUniversity of North Carolina School of MedicineChapel HillUSA

Personalised recommendations