Advertisement

Control and DNA Structure of the ampC β-Lactamase Gene of Escherichia coli

  • Bengtåke Jaurin
  • Thomas Grundström
  • Sven Bergström
  • Staffan Normark

Abstract

Escherichia coli K-12 is coding for a β-lactamase which hydrolyzes the β-lactam ring of both cephalosporins and penicillins including ampicillin. Its structural gene, ampC, has been mapped to 93.8 min on the E. coli chromosome (Burman et al., 1973; Grundström et al., 1980). The level of ampC β-lactamase is stric — ly proportional to the gene dosage, and to the ampicillin resistance (Normark et al., 1977) These features enabled us to directly select for ColEl ampC hybrid clones within the collection of ColEl hybrids prepared by Clarke and Carbon (Clarke and Carbon, 1976; Edlund et al., 1979). One ColEl ampC hybrid plasmid was physically mapped and the location of ampC within this plasmid was deduced by subcloning (Grundstrom et al., 1980). We could thereby demonstrate that the ampC gene was present on a 1,370 bp DNA segment. by selecting for various degrees of ampicillin resistance a number of IS. coli mutants have been i-solated that hyperproduce the ampC β-lactamase due to mutations in ampA, a control sequence region for ampC (Grundström et al., 1980).

Keywords

Amino Acid Sequence Homology Control Sequence Region Swedish Natural Science Research Council Dyad Symmetry ampC Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambler, R. P. 1979. Amino acid sequences of β-lactamases, in: “Beta-Lactamase”, J. M. T. Hamilton-Miller, J. T. Smith, eds., Academic Press, London, pp. 99–125.Google Scholar
  2. Burman, L. G., Park, J. T., Lindström, E. B., and Boman, H. G. 1973. Resistance of Escherichia coli to penicillins. X. Identification of the structural gene for the chromosomal penicillinase. J. Bacteriol. 116: 123–130.PubMedGoogle Scholar
  3. Clarke, L., and Carbon, J. 1976. A colony bank containing synthetic ColEl hybrid plasmids representative of the entire E. coli genome. Cell 9: 91–99.PubMedCrossRefGoogle Scholar
  4. Crawford, J. P., and Stauffer, G. V. 1980. Regulation of tryptophan biosynthesis. Ann. Rev. Biochem. 49: 163–195.PubMedCrossRefGoogle Scholar
  5. Edlund, T., Grundström, T., and Normark, S. 1979. Isolation and characterization of DNA repetitions carrying the chromosomal β-lactamase gene of Escherichia coli K-12. Molec. Gen. Genet. 173: 115–125.PubMedCrossRefGoogle Scholar
  6. Eriksson-Grennberg, K. G. 1968. Resistance of Escherichia coli to penicillins. II. An improved mapping of the ampA gene. Genet. Res. 12: 147–156.PubMedCrossRefGoogle Scholar
  7. Grundström, T., Jaurin, B., Edlund, T., and Normark, S. 1980. Physical mapping and expression of hybrid plasmids carrying chromosomal β-lactamase genes of Escherichia coli K-12. J. Bacteriol. 143: 1127–1134.PubMedGoogle Scholar
  8. Jaurin, B., and Normark, S. 1979. In vivo regulation of chromosomal β-lactamase in Escherichia coli. J. Bacteriol. 138: 896–902.PubMedGoogle Scholar
  9. Normark, S., Edlund, T., Grundström, T., Bergström, S., and Wolf-Watz, H. 1977. Escherichia coli K-12 mutants hyperpro-ducing chromosomal β-lactamase by gene repetitions. J. Bacteriol. 132: 912–922.PubMedGoogle Scholar
  10. Pedersen, S., Block, P. L., Reeh, S., and Neidhardt, F. C. 1978. Patterns of protein synthesis in E. coli: a catalog of the amount of l40 individual proteins at different growth rates. Cell 14: 179–190.PubMedCrossRefGoogle Scholar
  11. Siebenlist, U., Simpson, R. B., and Gilbert, W. 1980. E. coli RNA polymerase interacts homologously with two different promotors. Cell 20: 269–281.PubMedCrossRefGoogle Scholar
  12. Sutcliffe, J. G. 1978. Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. Proc. Natl. Acad. Sci. USA 75: 3737–3741.PubMedCrossRefGoogle Scholar
  13. Yocum, R. R., Waxman, D. J., Rasmussen, J. R., and Strominger, J. L. 1979. Mechanism of penicillin action: Penicillin and substrate bind covalently to the same active site serine in two bacterial D-alanine carboxypeptidase. Proc. Natl. Acad. Sci. USA 76: 2730–2734.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Bengtåke Jaurin
    • 1
  • Thomas Grundström
    • 1
  • Sven Bergström
    • 1
  • Staffan Normark
    • 1
  1. 1.Department of MicrobiologyUniversity of UmeåUmeåSweden

Personalised recommendations