Antibiotic Resistance — A Survey

  • Julian E. Davies


The study of antibiotic resistance determinants is an active area of investigation that covers many aspects of plasmid biology. Thus, there is interest in, not only the biochemical mechanism by which the determinants express their resistance, but also in the distribution, origins and dissemination of resistance mechanisms. The problem of dissemination is particularly interesting since antibiotic resistance provides a convenient marker for the investigation of transposable elements. Parenthically, it should be added that plasmid-encoded resistance determinants are key components of all cloning vectors used in recombinant-DNA experimentation 1and “amp” and “tet” have become almost bywords in the field!


Antibiotic Resistance Transposable Element Resistance Determinant Tetracycline Resistance Chloramphenicol Acetyl Transferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Davies and D.I. Smith, Plasmid-determined resistance to antimicrobial agents, Ann. Rev. Biochem. 32: 469 (1978).Google Scholar
  2. 2.
    L.E. Bryan and H.M. Van den Elzen, Effects of membrane-energy mutations and cations on streptomycin and genta-micin accumulation by bacteria: a model for entry of streptomycin and gentamicin in susceptible and resistant bacteria, Antimicrob. Ag. Chemother. 12: 163 (1977).CrossRefGoogle Scholar
  3. 3.
    S. Falkow, L.P. Elwell, M. Roberts, F. Heffron and R. Gill, The transcription of ampicillin resistance: nature of ampicillin resistant Hemophilus influenzae and Neisseria gonorrhea, in “R-factors, their properties and possible control”, Berlin, Springer-Verlag, New York 1977 p. 115.Google Scholar
  4. 4.
    A. Tomasz, From penicillin-binding proteins to the lysis and death of bacteria: a 1979 view, Rev. Infect. Dis. 1: 434–467 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    R.G. Coombe and A.M. George, A new plasmid-mediated aminoglycoside adenylyltransferase of broad substrate range that adenylylates amikacin, (submitted for publication).Google Scholar
  6. 6.
    D.B. Clewell, (pers. commun.) see this volume.Google Scholar
  7. 7.
    B. Weisblum, S.B. Holder and S.M. Hailing, Deoxyribonucleic acid sequence common to staphylococcal and streptococcal Plasmids which specify erythromicin resistance, J. Bacteriol. 138: 990–998 (1979).PubMedGoogle Scholar
  8. 8.
    S.N. Cohen. Transposable genetic elements and plasmid evolution. Nature 263: 731 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    D.E. Berg. Detection of transposable antibiotic resistance determinants with bacteriophage lambda, in “DNA insertion elements, plasmids and episomes’. Cold Spring Harbor Laboratory, 1977 p 555.Google Scholar
  10. 10.
    M.E. Nugent, D.H. Bone and N. Datta. A transposon Tn732 encoding gentamicin/tobramycin resistance. Nature 282: 422 (1980).CrossRefGoogle Scholar
  11. 11.
    C.E. Rubens, W.F. McNeill, W.E. Farrar. Evolution of multiple antibiotic resistance plasmids mediated by transposable deoxyribonucleic acid sequences. J. Bacteriology 140: 713 (1979).Google Scholar
  12. 12.
    W. Piepersberg and J. Davies (unpublished observations).Google Scholar
  13. 13.
    S.A. Khan and R.P. Novick. Terminal nucleotide sequences of Tn551, a transposon specifying erythromycin resistance in Staphylococcus aureus: homology with Tn3. Plasmid, 4: 148 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    G.S. Gray and T-S.R. Huang. Characterization of aminoglyco-side-resistance plasmids in Staphylococcus aureus, Plasmid, in presGoogle Scholar
  15. 15.
    J.G. Sutcliffe. Nucleotide sequence of the ampicillin esistance gene of Escherchia coli plasmid pBR322. Proc. Natl. Acad. Sci. U.S. 75: 3737 (1978).CrossRefGoogle Scholar
  16. 16.
    N.K. Alton and D. Vapnek. Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9. Nature, Vol. 282: 864 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    R. Marcoli, S. Iida, T.A. Bickle, Sequence of chloramphenicol transacetylase of transposon TnCam-204, Febs Lett. 110: 11 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    A. Oka, personal communicationGoogle Scholar
  19. 19.
    H. Schaller, personal communicationGoogle Scholar
  20. 20.
    S. Horinuchi and B. Weisblum. Posttranscriptional modificatior of mRNA conformation: a novel mechanism that regulates erythromycin-induced resistance. Proc. Natl. Scad. Sci. U.S. in press.Google Scholar
  21. 21.
    T. Gryczan, G. Grandi, J. Hahn, R. Grandi and D. Dubnau. Conformational alteration of mRNA structure and the posttranscriptional regulation of erythromycin-induced resistance. Nucl. Acids Res. in press.Google Scholar
  22. 22.
    S. Horinuchi and B. Weisblum. The control region for erythromycin resistance: free energy changes related to induction and mutation to constitutive expression. (Submitted for publication).Google Scholar
  23. 23.
    B. de Crombrugge, I. Pastan, W.V. Shaw and J.W. Rosner. Stimulation by cyclic AMP and ppGpp of chloramphenicol acetyltransferase synthesis. Nature 241: 237 (1973).Google Scholar
  24. 24.
    H-L. Yang, G. Zubay and S.B. Levy. Synthesis of an R-plasmid protein associated with tetracycline resistance is negatively regulated. Proc. Nat. Acad. Sci (US) 73: 1509 (1976).CrossRefGoogle Scholar
  25. 25.
    A. Jimenez and J. Davies. Expression of a transposable antibiotic resistance element in Saccharomyces. Nature 287: 869 (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    P. Courvalin, M. Fiandt and J. Davies. DNA relationships between genes coding for aminoglycoside-modifying enzymes from antibiotic-producing bacteria and R-plasmids. Microbiology, p 262 (1978).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Julian E. Davies
    • 1
  1. 1.Biogen S.A.Carouge/GenevaSwitzerland

Personalised recommendations