Plasmid-Specified Iron Uptake by Bacteraemic Strains of Escherichia coli

  • Peter H. Williams
  • Philip J. Warner


Although Escherichia coli is a normally harmless major aerobic component of the gut flora of a healthy individual, some strains are invasive, and able to produce extraintestinal infections. E. coli has been isolated from urinary tract infections and from cases of neonatal meningitis and bacteraemia. Smith1 reported that a significant proportion of E. coli strains associated with bacteraemia of humans and domestic animals harboured plasmids (ColV) specifying the narrow spectrum antibacterial protein colicin V. Furthermore, Cabello2 found that many E. coli strains isolated from patients with meningitis carried such ColV plasmids. It has been unequivocally shown that possession of a ColV plasmid markedly enhances the virulence of E. coli strains in comparison with plasmid-free strains in experimental infections of a number of laboratory animals1,2,3.


Iron Uptake Iron Binding Protein Neonatal Meningitis Iron Stress Iron Chelate Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    H. W. Smith, J.Gen.Microbiol. 83: 95–111 (1974)PubMedCrossRefGoogle Scholar
  2. 2.
    F. Cabello, in “Plasmids of Medical, Environmental and Commercial Importance” K.N. Timmis and A. PUhler, eds., Elsevier-North Holland Biomedical Press, Amsterdam, ppl55–160 (1979).Google Scholar
  3. 3.
    H. W. Smith and M. B. Huggins, J. Gen. Microbiol. 92: 355–350 (1976).Google Scholar
  4. 4.
    J. Clancy and D. C. Savage, Infect. Immun, in the press (1981).Google Scholar
  5. 5.
    G. Ozanne, L.G. Mathieu and J.P. Baril, Infect. Immun. 17: 497–503 (1977).PubMedGoogle Scholar
  6. 6.
    G. Ozanne, L.G. Mathieu and J. P. Baril, Rev. Can. Biol. 36: 307–316 (1977).PubMedGoogle Scholar
  7. 7.
    M. M. Binns, D. L. Davies and K. G. Hardy, Nature 279: 778–781 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    E. D. Weinberg, Microbiol. Rev. 42: 45–66 (1978).PubMedGoogle Scholar
  9. 9.
    J. J. Bullen, H. J. Rogers and E. Griffiths, in “Microbial Iron Metabolism”, J. B. Neilands, ed., Academic Press, New York pp518–552 (1974).Google Scholar
  10. 10.
    P.H. Williams and H.K. George, in “Plasmids of Medical, Environmental and Commercial Importance”, K. N. Timmis and A. PUhler, eds. Elsevier-North Holland Biomedical Press, Amsterdam ppl61–172 (1979).Google Scholar
  11. 11.
    P.H. Williams, Infect. Immun. 26: 925–932 (1979).PubMedGoogle Scholar
  12. 12.
    H. Rosenberg and I. G. Young, in “Microbial Iron Metabolism”, J.B. Neilands, ed., Academic Press, New York pp67–82 (1974).Google Scholar
  13. 13.
    G. E. Frost and H. Rosenberg, Biochim. Biophys. Acta 330: 90–101 (1973).PubMedCrossRefGoogle Scholar
  14. 14.
    I. G. O Brien and F. Gibson, Biochim. Biophys. Acta 215: 309–402 (1970).Google Scholar
  15. 15.
    R. E. W. Hancock, K. Hantke and V. Braun, J. Bacteriol. 127: 1370–1375 (1976).PubMedGoogle Scholar
  16. 16.
    M. Luckey, J. R. Pollack, R. Wayne, B. N. Ames and J. B. Neilands, J. Bacteriol. 111: 731–738 (1972).PubMedGoogle Scholar
  17. 17.
    S. J. Stuart, K. T. Greenwood and R. K. J. Luke, J. Bacteriol. 143: 35–42 (1980).PubMedGoogle Scholar
  18. 18.
    T. Z. Csaky, Acta Chem. Scand. 2: 450–454 (1948).CrossRefGoogle Scholar
  19. 19.
    P. H. Williams and P. J. Warner, Infect. Immun. 29: 411–416 (1980).PubMedGoogle Scholar
  20. 20.
    F. Gibson, and D. I. Magrath, Biochim. Biophys. Acta 192: 175–184 (1969).PubMedCrossRefGoogle Scholar
  21. 21.
    S. M. Payne, J. Bacteriol. 143: 1420–1424 (1980).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Peter H. Williams
    • 1
  • Philip J. Warner
    • 1
  1. 1.Department of GeneticsUniversity of LeicesterLeicesterEngland

Personalised recommendations