Toward Elucidating the Mechanism of Action of the Ligninolytic Systems in Basidiomycetes

  • T. Kent Kirk
Part of the Basic Life Sciences book series


The fact that this lecture is scheduled between lectures on xylanases and amylases perhaps illustrates the common misconception that the ligninolytic system bears a close biochemical similarity to other common biopolymer-degrading microbial systems. It does not. It is a most unusual system which has not yet been defined biochemically. However, recent studies, which I shall review here, have resulted in progress toward this end.


Lignin Degradation Phanerochaete Chrysosporium Coniferyl Alcohol Lignin Polymer COOH COOH 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, E., 1977, Lignin chemistry—Past, present and future, Wood Sci. Technol., 11:169.CrossRefGoogle Scholar
  2. 2.
    Freudenberg, K., 1968, The constitution and biosynthesis of lignin, In: “Constitution and Biosynthesis of Lignin,” A.C. Neish and K. Freudenberg, eds., p. 45, Springer, New York.Google Scholar
  3. 3.
    Sarkanen, K.V. and C.H. Ludwig, eds., 1971, “Lignins: Occurrence, Formation, Structure and Reactions,” Wiley-Interscience, New York, 916 p.Google Scholar
  4. 4.
    Kirk, T. K., (1981), Lignin degradation, In: “Biochemistry of Microbial Degradation,” D. T. Gibson, ed., Marcel Dekker, New York.Google Scholar
  5. 5.
    Crawford, D.L. and R.L. Crawford, 1980, Microbial degradation of lignin, Enz. Microbial Technol., 2:11.CrossRefGoogle Scholar
  6. 6.
    Crawford, D.L. and R.L. Crawford, 1976, Microbial degradation of lignocellulose: The lignin component, Appl. Environ. Microbiol. 31:714.PubMedGoogle Scholar
  7. 7.
    Federle, T.W. and J.R. Vestal, 1980, Lignocellulose mineralization by arctic lake sediments in response to nutrient manipulation, Appl. Environ. Microbiol. 40:32.PubMedGoogle Scholar
  8. 8.
    Hackett, W.F., W.J. Connors, T.K. Kirk, and J.G. Zeikus, 1977, Microbial decomposition of synthetic 14C-labeled lignins in nature: Lignin biodegradation in a variety of natural materials, Appl. Environ. Microbiol., 33:43.PubMedGoogle Scholar
  9. 9.
    Martin, J.P. and K. Haider, 1980, Microbial degradation and stabilization of 14C-labeled lignins, phenols, and phenolic polymers in relation to soil humus formation, In: “Lignin Biodegradation: Microbiology, Chemistry and Potential Applications,” T.K. Kirk, T. Higuchi, and H.-M. Chang, eds., CRC Press, Boca Raton, Florida, Vol. I, p. 77.Google Scholar
  10. 10.
    Zeikus, J.G., 1980, Fate of lignin and related aromatic substances in anaerobic environments, In: “Lignin Biodegradation: Microbiology, Chemistry and Potential Applications,” T.K. Kirk, T. Higuchi, and H.-M. Chang, eds., Vol. I, p. 101, CRC Press, Boca Raton, Fla.Google Scholar
  11. 11.
    Zeikus, J.G., 1981, Lignin metabolism and the carbon cycle: Polymer biosynthesis, biodégradation and environmental recalcitrance, Adv. Microbial Ecol. (in press).Google Scholar
  12. 12.
    Ander, P., and K.-E. Eriksson, 1978, Lignin degradation and utilization by microorganisms, In: “Progress in Industrial Microbiology,” Vol. 14, M.J. Bull, ed., p. 1, Elsevier, Amsterdam.Google Scholar
  13. 13.
    Kirk, T.K, and P. Fenn, (1981), Formation and action of the ligninolytic system in basidiomycetes, In: “Decomposition by Basidiomycetes,” J. Frankland and J. Hedger, eds., p. Cambridge Univ. Press, Cambridge, United Kingdom.Google Scholar
  14. 14.
    Burdsall, H.H. and W.E. Eslyn, 1974, A new Phanevochaete with a chrysosporium imperfect state, Mycotaxon, 1:123.Google Scholar
  15. 15.
    Kirk, T.K., W.J. Connors, R.D. Bleam, W.F. Hackett, and J.G. Zeikus, 1975, Preparation and microbial decomposition of synthetic [14C] lignins, Proc. Nat. Acad. Sci., 72(7):2515–2519.PubMedCrossRefGoogle Scholar
  16. 16.
    Kirk, T.K., W.J. Connors, and J.G. Zeikus, 1976, Requirement for a growth substrate during lignin decomposition by two wood-rotting fungi, Appl. Environ. Microbiol., 32:192.PubMedGoogle Scholar
  17. 17.
    Keyser, P., T.K. Kirk, and J.G. Zeikus, 1978, Ligninolytic enzyme system of Plaanevodhaete chrysosporium: Synthesized in the absence of lignin in response to nitrogen starvation, J. Bacteriol., 135:790.PubMedGoogle Scholar
  18. 18.
    Hiroi, T. and K.-E. Eriksson, 1976, Microbiological degradation of lignin. Part 1. Influence of cellulose on the degradation of lignins by the white-rot fungus Pleurotus ostreatus, Sven. Pappevstidn., Vol. 79,157.Google Scholar
  19. 19.
    Drew, S.W. and K.L. Kadam, 1979, Lignin metabolism by Aspergillus fiwiigatus and white-rot fungi, In: “Developments in Industrial Microbiology,” Vol. 20, L.A. Underkofler, ed., p. 153, Soc. Ind. Microbiol., Arlington, Va.Google Scholar
  20. 20.
    Jeffries, T.W., S. Choi, and T.K. Kirk, (1981), Nutritional regulation of lignin degradation in Phanevochaete ohrysosporium Appl. Environ. Microbiol. (in press).Google Scholar
  21. 21.
    Kirk, T.K., E. Schultz, W.J. Connors, L.F. Lorenz, and J.G. Zeikus, 1978, Influence of culture parameters onlignin metabolism by Phanevochaete chrysosporium, Arch. Microbiol., 117:277.CrossRefGoogle Scholar
  22. 22.
    Reid, I.D., 1979, The influence of nutrient balance on lignin degradation by the white-rot fungus Phanevochaete chrysosporium, Can. J. Bot., 57:2050.CrossRefGoogle Scholar
  23. 23.
    Yang, H.-H., M. Effland, and T.K. Kirk, 1980, Factors influencing fungal decomposition of lignin in a representative lignocellulosic, thermomechanical pulp, Biotech. Bioeng. 22:65.CrossRefGoogle Scholar
  24. 24.
    Fenn, P. and T.K. Kirk, 1979, Ligninolytic system of Phanerochaete chrysosporium: Inhibition by o-phthalate, Arch. Microbiol., 123: 307.CrossRefGoogle Scholar
  25. 25.
    Bu’Lock, J.D., 1975, Secondary metabolism in fungi and its relationship to growth and development, In: “The Filamentous Fungi,” Vol. 1, J.E. Smith and D.R. Berry, eds., p. 33, Wiley, New York.Google Scholar
  26. 26.
    Fenn, P. and T.K. Kirk, 1981, Relationship of nitrogen to the onset and suppression of ligninolytic activity and secondary metabolism in Phanevochaete ohvysosporiwn. Arch. Microbiol. (in press).Google Scholar
  27. 27.
    Shimada, M., F. Nakatsubo, T. Higuchi, and T.K. Kirk, (1981), Biosynthesis of veratryl alcohol in relation to lignin degradation in Phanevochaete chvysospoviwn. Arch. Microbiol. (in press).Google Scholar
  28. 28.
    Fenn, P., S. Choi, and T.K. Kirk, 1981, Ligninolytic activity in Phanevochaete chrysosporium: Physiology of transient suppression by NH+ and L-glutamate. Arch. Microbiol. (in press).Google Scholar
  29. 29.
    Wilcox, W.W., 1968, Changes in wood microstructure through progressive stages of decay. USDA Forest Service Research Paper FPL 70, 45 p.Google Scholar
  30. 30.
    Kirk, T.K., L.F. Lorenz, and H.-M. Chang, 1975, Topochemistry of the fungal degradation of lignin in birch wood as related to the distribution of guaiacyl and syringyl lignins. Wood Sci. Technol., 9:81.CrossRefGoogle Scholar
  31. 31.
    Enoki, A., G.P. Goldsby, and M.H. Gold, 1980, Metabolism of the lignin model compounds veratrylglycerol-β-guaiacyl ether and 4-ethoxy-3-methoxyphenylglycerol-β-guaiacyl ether by Phanevochaete chrysosporium, Arch. Microbiol. 125:277.CrossRefGoogle Scholar
  32. 32.
    Nakatsubo, F., T.K. Kirk, M. Shimada,„ and T. Higuchi, (1981), Metabolism of a phenylcoumaran substructure model compound in ligninolytic cultures of Phanevochaete chrysosporium 3 Arch. Microbiol, (in press).Google Scholar
  33. 33.
    Chua, M.G.S., C.-L. Chen, H.-m. Chang and T.K. Kirk, (1981), 13C-NMR characterization of spruce lignin degraded by Phanevochaete chrysosporium 3 Holzforschung (in press).Google Scholar
  34. 34.
    Ellwardt, P.-C, K. Haider, and L. Ernst, (1981), Untersuchung des microbiellen Ligninabbaues durch 13C-NMR-Spektroskopie an spezifisch 13C-angereichertem DHP-Lignin aus Coniferylalkohol, Holzforschung (in press).Google Scholar
  35. 35.
    Chen, C.-L., H.-m. Chang and T.K. Kirk, (1981), Low molecular weight aromatic acids from spruce wood decayed by Phanevochaete chrysosporium, Holzforschung (in press).Google Scholar
  36. 36.
    Gilbertson, R.L., 1980, Wood-rotting fungi of North America, Mycologia, 72:1.CrossRefGoogle Scholar
  37. 37.
    Kirk, T.K. and E. Adler, 1970, Methoxyl-deficient structural elements in lignin of sweetgum decayed by a brown-rot fungus, Acta Chem. Scand., 24:3379.CrossRefGoogle Scholar
  38. 38.
    Kirk, T.K., 1975, Effects of the brown-rot fungus Lenzites trabes on the lignin in spruce wood, Holzforschung, 29:99.CrossRefGoogle Scholar
  39. 39.
    Kirk, T.K., S. Larsson, and G.E. Miksche, 1970, Aromatic hydroxylation resulting from attack of lignin by a brown-rot fungus, Acta Chem. Scand., 24:1470.CrossRefGoogle Scholar
  40. 40.
    Haider, K. and J. Trojanowski, 1980, A comparison of the degradation of 14C-labeled DHP and corn stalk lignins by micro- and macrofungi and bacteria, In: “Lignin Biodegradation: Microbiology, Chemistry and Potential Applications,” T.K. Kirk, T. Higuchi, and H.-M. Chang, eds., Vol. I p. 111, CRC Press, Boca Raton, Florida.Google Scholar
  41. 41.
    Hata, K., 1966, Investigations on lignins and lignification: 33: Studies on lignins isolated from spruce wood decayed by Poria subaoida B11, Holzforschung, 20:142.CrossRefGoogle Scholar
  42. 42.
    Kirk, T.K. and H.-M. Chang, 1975, Decomposition of lignin by white-rot fungi. II. Characterization of heavily degraded lignins from decayed spruce wood. Holzforschung, 29:56.CrossRefGoogle Scholar
  43. 43.
    Fukuzumi, T., 1980a, Microbial metabolism of lignin-related aromatics, In: “Lignin Biodegradation: Microbiology, Chemistry and Potential Applications,” T.K. Kirk, T. Higuchi, and H.-m Chang, eds., Vol. II p. 73, CRC Press, Boca Raton, Fla.Google Scholar
  44. 44.
    Freudenberg, K., J.M. Harkin, M. Riechert, and T. Fukuzumi, 1958, Die an der Verholzung beteiligten Enzyme, Die Dehydrierung des Sinapinalkohols, Chem. Ber., 91:581.CrossRefGoogle Scholar
  45. 45.
    Ishihara, T., 1980, The role of laccase in lignin biodégradation, In: “Lignin Biodegradation: Microbiology, Chemistry and Potential Applications,” T.K. Kirk, T. Higuchi and H.-M. Chang, eds., Vol. II p. 17, CRC Press, Boca Raton, Florida.Google Scholar
  46. 46.
    Ishikawa, H., W.J. Schubert, and F.F. Nord, 1963, Investigations on lignins and lignification: 27: The enzymatic degradation of softwood lignin by white-rot fungi, Arch. Biochem. Biophys., 100:140.PubMedCrossRefGoogle Scholar
  47. 47.
    Lundquist, K., T.K. Kirk, and W.J. Connors, 1977, Fungal degradation of kraft lignin and lignin sulfonates prepared from synthetic 14C-lignins, Arch. Microbiol., 112:291.CrossRefGoogle Scholar
  48. 48.
    Fukuzumi, T., 1980b, Microbial decolorization and deforming of pulping waste liquors, In: “Lignin Biodegradation: Microbiology, Chemistry, and Potential Applications” T.K. Kirk, T. Higuchi, and H.-M. Chang, eds., Vol. II p. 161, CRC Press, Boca Raton, Florida.Google Scholar
  49. 49.
    Eaton, D., H.-M. Chang, and T.K. Kirk, 1980, Fungal decoloration of kraft bleach plant effluents, Tappi, 63:103.Google Scholar
  50. 50.
    Sundman, G., T. K. Kirk, and H.-M. Chang, (1981), Fungal decolorization of kraft bleach plant effluents: Fate of the chromphores, Tappi (in press).Google Scholar
  51. 51.
    Kirk, T.K., 1975, Lignin-degrading enzyme system, In: “Cellulose as a Chemical and Energy Resource,” C. Wilke, ed., p. 139, Biotechnol. Bioeng. Symp. 5, John Wiley, New York.Google Scholar
  52. 52.
    Hall, P.L., 1980, Enzymatic transformations of lignin: 2, Enzyme Microb. Technol., 2:170.CrossRefGoogle Scholar
  53. 53.
    Cowling, E.B., 1961, Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi, USDA Tech. Bulletin 1258, 79 p.Google Scholar
  54. 54.
    Highley, T.L., 1977, Requirements for cellulose degradation by a brown-rot fungus, Mater. Org., 12: 25.Google Scholar
  55. 55.
    Highley, T.L., 1975, Properties of cellulases of two brown-rot fungi and two white-rot fungi, Wood Fiber, 6:275.Google Scholar
  56. 56.
    Cowling, E.B., 1963, Structural features of cellulose that influence its susceptibility to enzymatic hydrolysis, In: “Advances in Enzymatic Hydrolysis of Cellulose and Related Materials,” E. Reese, ed., p. 1, Pergamon, New York.Google Scholar
  57. 57.
    Koenigs, J., 1974, Production of hydrogen peroxide by wood-rotting fungi in wood and its correlation with weight loss, depolymerization, and pH changes, Arch. Microbiol., 99:129.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • T. Kent Kirk
    • 1
  1. 1.Forest Products Laboratory, Forest ServiceU. S. Department of AgricultureMadisonUSA

Personalised recommendations