Advertisement

Cellulase Kinetics

  • Michael R. Ladisch
  • Juan Hong
  • Marcio Voloch
  • George T. Tsao
Part of the Basic Life Sciences book series

Abstract

The production of fermentable sugar from biomass is the first step in obtaining liquid fuels and chemicals from renewable resources by fermentation processes. Biomass materials include corn residue, small grain residues (straws), sugarcane bagasse, forages and forestry residues. It is estimated that these sources alone could yield up to 40 billion gallons of ethanol/year (1,2).

Keywords

Substrate Inhibition Product Inhibition Cellulose Hydrolysis Cellulase Enzyme Trichoderma Viride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tyner, W.E., Biotechnol. Bioeng. Symp. No. 10, CD. Scott, ed., 81 (1980).Google Scholar
  2. 2.
    Bellamy, W.D., Biotechnol. Bioeng., XVI, 869 (1974).CrossRefGoogle Scholar
  3. 3.
    Tsao, G.T., Process Biochemistry, 13 (10), 12 (1978).Google Scholar
  4. 4.
    Ladisch, M.R., Process Biochemistry, 14(1), 21 (1979).Google Scholar
  5. 5.
    Wenzel, H.F., The Chemical Technology of Wood, Academic Press, N.Y., 157 (1970).Google Scholar
  6. 6.
    Cowling, E.B. and W. Brown, Adv. Chem. Series No. 95, Am. Chem. Soc., Washington, DC, 152 (1969).Google Scholar
  7. 7.
    Gong, C.S., C.S. Chen, L.G. Chiang, M.C. Flickinger, and G.T. Tsao, “Production of ethanol from D-xylose using D-xylose isomerase and yeast,” Appl. Environ. Microbiol., in press (1981).Google Scholar
  8. 8.
    Nystrom, J., Biotechnol. Bioeng. Symp. No. 5, 221 (1975).PubMedGoogle Scholar
  9. 9.
    Han, Y.W., W.P. Chen, and T.R. Miles, Biotechnol. Bioeng, XX, 567 (1978).CrossRefGoogle Scholar
  10. 10.
    Sasaki, T., T. Tanaka, N. Nanbu, Y. Sato, and K. Kainuma, Biotechnol. Bioeng., XXI, 1031 (1979).CrossRefGoogle Scholar
  11. 11.
    Dunning, J.W. and E.C. Lathrop, Ind. Eng. Chem., 37, 24 (1945).CrossRefGoogle Scholar
  12. 12.
    Millett, M.A., A.J. Baker, and L. T. Saffer, Biotechnol. Bioeng. Symp. No. 5, 193 (1975).PubMedGoogle Scholar
  13. 13.
    Ladisch, M.R., CM. Ladisch, and G.T. Tsao, Science, 201, 743 (1978).PubMedCrossRefGoogle Scholar
  14. 14.
    Sakai, Y., Bull. Chenu Sco. (Japan), 38(6), 863 (1965).CrossRefGoogle Scholar
  15. 15.
    Uskov, Yu. N., and N.V. Chalov, Gidr. _i. Lesokhimi. Promylshl. (USSR), 8 1 (1979).Google Scholar
  16. 16.
    Detroy, R.W., L.A. Lindenfelser, G. St. Julian, Jr., and W.L. Orton, Biotechnol. Bioeng. Symp. No. 10, 135 (1980).Google Scholar
  17. 17.
    Chang, M. Laboratory of Renewable Resources Engineering, Personal Communication (1980).Google Scholar
  18. 18.
    Millett, M.A., M.J. Effland, and D.F. Caulfied, Adv. Chem. Ser. No. 181, Am. Chem. Soc., Washington, D.C. 71 (1979).Google Scholar
  19. 19.
    Gong, CS., M.R. Ladisch, and G.T. Tsao, op. cit., p. 261.Google Scholar
  20. 20.
    Gritzali, M. and R.D. Brown, Adv. Chem. Ser. No. 181, Am. Chem. Washington, D.C, 237 (1979).Google Scholar
  21. 21.
    Montenecourt, B.S., and D.E. Eveleigh, Adv. Chem. Ser. No. 181, Am. Chem. Soc., Washington, D.C, 181 (1979).Google Scholar
  22. 22.
    Wood, T.M., and S.I. McCrae, Adv. Chem. Ser. No. 181, Am. Chem. Soc., Washington, D.C, 181 (1979).Google Scholar
  23. 23.
    Mandels, M., R. Andreotti, and C Roche, Biotechnol. Bioeng. Symp. No. 6, 21 (1976).PubMedGoogle Scholar
  24. 24.
    Shoemaker, S.P., and R.D. Brown, Jr., Biochimica et Biophysica Acta., 523, 133 (1978).PubMedGoogle Scholar
  25. 25.
    ibid., p. 147.PubMedGoogle Scholar
  26. 26.
    Wood, T.M. and S. I. McCrae, Symposium on Enzymatic Hydrolysis of Cellulose, M. Bailey, T.M. Enari, and T.M. Linko, eds., Helsinki, Finland, 231 (1975).Google Scholar
  27. 27.
    Berghem, L.E.R., and L.G. Pettersson, Eur. J. Biochem., 37, 27 (1973).CrossRefGoogle Scholar
  28. 28.
    Ladisch, M.R., C.S. Gong, and G.T. Tsao, Dev. Ind. Microbiol., 18, 157 (1977).Google Scholar
  29. 29.
    Gong, CS., M.R. Ladisch, and G.T. Tsao, Biotechnol. Bioeng. 19, 959 (1977).PubMedCrossRefGoogle Scholar
  30. 30.
    Maguire, R., Can. J. Biochem., 55, 19 (1977).PubMedCrossRefGoogle Scholar
  31. 31.
    Reese, E.T., R.G.H. Siu, and H.S. Levin, J . Bacteriol., 59 485 (1950).PubMedGoogle Scholar
  32. 32.
    Selby, K. and C.C. Maitland, Biochem. J. 104, 716 (1967).PubMedGoogle Scholar
  33. 33.
    Erickson, K.E., and B. Petterson, Eur. J . Biochem. 51, 193 (1975).CrossRefGoogle Scholar
  34. 34.
  35. 35.
    Halliwell, G. and M. Griffin, Biochem. J. 135, 587 (1973).PubMedGoogle Scholar
  36. 36.
    Emert, G.H., E.K. Gum, Jr., J.A. Lang, T.H. Lin, and R.D. Brown, Jr., Adv. Chem. Ser. No. 136, Am Chem. Soc., Washington, D.C., 79 (1974).Google Scholar
  37. 37.
    Wood, T.M. and S.I. McCrae, Biochem. J. 128, 1183 (1972).PubMedGoogle Scholar
  38. 38.
    Berghem, L.E.R., and L.G. Pettersson, Eur. J. Biochem., 46, 295–305 (1974).PubMedCrossRefGoogle Scholar
  39. 39.
    Ladisch, M.R., C.S. Gong, and G.T. Tsao, Biotechnol. Bioeng. XXII, 1107 (1980).CrossRefGoogle Scholar
  40. 40.
    Hsu, T.A., CS. Gong, and G.T. Tsao, Biotechnol. Bioeng., XXII, 2305 (1980).CrossRefGoogle Scholar
  41. 41.
    Howell, J.A., and J.D. Stuck, Biotechnol. Bioeng. XVII, 873 (1975).CrossRefGoogle Scholar
  42. 42.
    Katz, M. and E.T. Reese, Appl. Microbiol. 16 (2), 419 (1968).PubMedGoogle Scholar
  43. 43.
    Ghose, T.K., Adv. In Biochem. Eng., 6, T.K. Ghose, A. Fiechter, N. Blakebough, eds., Springer-Verlag, Berlin, 39 (1977).CrossRefGoogle Scholar
  44. 44.
    Nisizawa, K., J . Ferment. Technol., 51 (4), 267 (1973).Google Scholar
  45. 45.
    Nakayama, M., Y. Tomita, H. Suzuki, and K. Nisizawa, J. Biochem., 79., 955 (1976).PubMedGoogle Scholar
  46. 46.
    Miller, G.L., J. Dean, and R. Blum, Arch. Biochem. Biophys., 91, 21 (1960).CrossRefGoogle Scholar
  47. 47.
    Huebner, A., M.R. Ladisch, and G.T. Tsao, Biotechnol. Bioeng. XX, (10), 1669 (1978).CrossRefGoogle Scholar
  48. 48.
    Gum, E.K., Jr., and R.D. Brown, Jr., Anal. Biochem., 82 372 (1977).PubMedCrossRefGoogle Scholar
  49. 49.
    Palmer, J.K., Appl. Polym. Symp. No. 28, 237 (1975).Google Scholar
  50. 50.
    Ladisch, M.R., A.L. Huebner, and G. T. Tsao, J. Chromatog., 147, 185 (1978).CrossRefGoogle Scholar
  51. 51.
    Ladisch, M.R., and G.T. Tsao, J. Chromatog. 166, 85 (1978).CrossRefGoogle Scholar
  52. 52.
    Ladisch, M.R., A.W. Anderson, and G. T. Tsao, J. Liq. Chromatog., 2 (5), 745 (1979).CrossRefGoogle Scholar
  53. 53.
    Brobst, K.M., H.D. Scobell, and E. M. Steeler, Proc. Am. Soc. Beer Brewing Chemists, 43 (1973).Google Scholar
  54. 54.
    Jandera P., and J. Churacek, J. Chromatog., 98, 55 (1974).CrossRefGoogle Scholar
  55. 55.
    Saunders, R.M., Carbohydr. Res. 7, 76 (1968).CrossRefGoogle Scholar
  56. 56.
    Shaffer, P.A. and A.F. Hartman, J. Biol. Chem., 45, 349 (1921).Google Scholar
  57. 57.
    Shaffer, P.A. and M. Somogyi, J. Biol. Chem., 100, 695 (1933).Google Scholar
  58. 58.
    Somogyi, M., J. Biol. Chem., 70, 599 (1926);Google Scholar
  59. 58a.
    Somogyi, M., J. Biol. Chem., 117, 771 (1937);Google Scholar
  60. 58b.
    Somogyi, M., J. Biol. Chem., 160, 61, 69 (1945);Google Scholar
  61. 58c.
    Somogyi, M., J. Biol. Chem., 195, 19 (1952).Google Scholar
  62. 59.
    Nelson, N., J . Biol. Chem., 153, 375 (1944).Google Scholar
  63. 60.
    Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers, and F. Smith, Anal. Chem., 28, 350 (1956).CrossRefGoogle Scholar
  64. 61.
    Viles, F.J., Jr., and L. Silverman, Ind. Eng. Chem., Anal. Ed., 21, 950 (1949).Google Scholar
  65. 62.
    Dreywood, R., Ind. Eng. Chem., Anal. Ed., 18, 499 (1946).CrossRefGoogle Scholar
  66. 63.
    Mandels, M., R. Andreotti, and C. Roche, Biotechnol. Bioeng. Symp. No. 6, 21 (1976).PubMedGoogle Scholar
  67. 64.
    Zabriskie, D.W., Syed A.S.M. Qutubuddin, and K.M. Downing, Biotechnol. Bioeng. Symp. No. 10, 149 (1980).Google Scholar
  68. 65.
    Hong, J., M.R. Ladisch, C.S. Gong, P.C. Wankat, and G.T. Tsao, Biotechnol. Bioeng. submitted.Google Scholar
  69. 66.
    Ladisch, M.R., PhD Thesis, Purdue University, 1977.Google Scholar
  70. 67.
    Plowman, K.M., Enzyme Kinetics, McGraw-Hill, NY (1972).Google Scholar
  71. 68.
    Segal, I.H., Enzyme Kinetics, Wiley-Interscience, NY (1975).Google Scholar
  72. 69.
    Cornish-Bowden, A., Biochem. J., 149, 305 (1975).PubMedGoogle Scholar
  73. 70.
    Eisenthal, R. and A. Cornish-Bowden, Biochem. J., 139, 715 715 (1974).PubMedGoogle Scholar
  74. 71.
    de Miguel, M., Biochem. J., 143, 93 (1974).Google Scholar
  75. 72.
    Foster, R.J. and C. Nieman, Proc. Nat. Acad. Sci., 39, 999 (1953).PubMedCrossRefGoogle Scholar
  76. 73.
    Dixon, M. and E. C. Webb, in The Enzymes, Academic Press, NY, 69 (1958).Google Scholar
  77. 74.
    King, K.W., Biochem. Biophys. Res. Com., 24 (3), 395 (1966).CrossRefGoogle Scholar
  78. 75.
    Maguire, R.J., Can. J. Biochem., 55, 644 (1977).PubMedCrossRefGoogle Scholar
  79. 76.
    Whitaker, D.R., in Biological Degradation of Cellulose, J.A. Gascoigue, and M.M. Gascoigue, ed., Butterworths, London, 161 (1960).Google Scholar
  80. 77.
    Humphrey, A.E., in Adv. Chem. Ser. 181, Am. Chem. Soc., Washington, D.C., 25 (1979).Google Scholar
  81. 78.
    McLaren, A.D. and L. Packer, Adv. Enzymol. Related Subj. Biochem., 3, 245 (1970)Google Scholar
  82. 79.
    Humphrey, A.E., E.R. Moreira, W.B. Arminger, and D. Zabriskie, Biotechnol. Bioeng. Symp. No. 7, 45 (1977).Google Scholar
  83. 80.
    Lee, S.E., PhD Thesis, University of Pennsylvania (1977).Google Scholar
  84. 81.
    Van Dyke, B.H., Jr., PhD Thesis, Massachusetts Institute of Technology (1972).Google Scholar
  85. 82.
    Huang, A.A., Biotechnol. Bioeng., XVII, 1421 (1975).CrossRefGoogle Scholar
  86. 83.
    Okazaki, M. and M. Moo-Young, Biotechnol. Bioeng. XX, 637 (1978).CrossRefGoogle Scholar
  87. 84.
    Sternberg, D., Appl. Environ. Microbiol., 3l (5) 648 (1976).Google Scholar
  88. 85.
    Bissett, F. and D. Sternberg, Appl. Environ. Microbiol., 35 (4) 750 (1978).PubMedGoogle Scholar
  89. 86.
    Okada, G. and K. Misizawa, J. Biochem., 78, 297 (1975).PubMedGoogle Scholar
  90. 87.
    Cole, F.E. and K.W. King, Biochimica et Biophysica Acta, 81, 122 (1964).Google Scholar
  91. 88.
    Rinardo, M., F. Barnard, and J.P. Merle, J. Polym. Sci., Part C, No. 28, 197 (1969).Google Scholar
  92. 89.
    Tsao, G.T. and M.M. Chang, Colloque Celluloyse Microbienne, Centre National de la Recherche Scientifique, (Marseille), 93 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Michael R. Ladisch
    • 1
    • 2
    • 3
  • Juan Hong
    • 1
  • Marcio Voloch
    • 1
    • 3
  • George T. Tsao
    • 3
  1. 1.Laboratory of Renewable Resources EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Department of Agricultural EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.School of Chemical EngineeringPurdue UniversityIndianaUSA

Personalised recommendations