Regulatory Controls in Relation to Overproduction of Fungal Cellulases

  • B. S. Montenecourt
  • S. D. Nhlapo
  • H. Trimiño-Vazquez
  • S. Cuskey
  • D. H. J. Schamhart
  • D. E. Eveleigh
Part of the Basic Life Sciences book series


A growing trend in the development of viable processes for the conversion of renewable cellulosic biomass to glucose is the use of microbial cellulases as biological catalysts. Unfortunately, the cost of the cellulase enzymes has been prohibitive for large scale industrial application in saccharification of cellulose. The high cost of cellulase is due largely to the low yield and to the low specific activity of enzymes from the available microbial strains. Improvement of the cellulolytic microbial strains can be considerably enhanced through selective screening programs. However, the rationale for selection and the chance of isolation of more useful strains are hampered by our lack of understanding of mechanisms controlling the synthesis and secretion of cellulase. Successful genetic cloning and expression of the cellulase genes from Tviohodevma or any other cellulolytic microorganism is similarly dependent upon a sound basic knowledge of the control mechanisms. Tviohodevma genetics is an unexplored abyss. Although Tviohodevma is reported to have a sexual stage, in the Hypoovea (1,2) mating types are generally unavailable. Thus, traditional methods of delineating genetic linkages are elusive.


Regulatory Control Extracellular Protein Cellulase Production Catabolite Repression Cellulase Enzyme 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Webster, J. 1964. Trans. British. Mycol. Soc. 47:75.CrossRefGoogle Scholar
  2. 2.
    Doi, Y. 1968. Bulletin National Science Museum, Tokyo. 11:185.Google Scholar
  3. 3.
    Lewin, B. 1980. Gene Expression Vol. 2. John Wiley and Sons, London, England.Google Scholar
  4. 4.
    Watson, J.D. 1976. Molecular Biology of the Gene. W.A. Benjamin, Inc., Menlo Park, GA.Google Scholar
  5. 5.
    Davidson, E.H. and R.J. Britten. 1979. Science. 204:1052.PubMedCrossRefGoogle Scholar
  6. 6.
    Whittaker, R.H. 1969. Science 163:150.PubMedCrossRefGoogle Scholar
  7. 7.
    Palade, G.E. 1975. Science, 189:347.PubMedCrossRefGoogle Scholar
  8. 8.
    Hopkins, C.R. 1979. XXXIII Symposium of the Society for Experimental Biology, Secretory Mechanisms, Cambridge University Press, Cambridge, England.Google Scholar
  9. 9.
    Davis, B.D., and P.-C. Tai. 1980. Nature 283:433.PubMedCrossRefGoogle Scholar
  10. 10.
    Berg, B. and A. Hofsten. 1976. J. Appl. Bacteriol. 41:395.PubMedCrossRefGoogle Scholar
  11. 11.
    Handley, D.A. and B.K. Ghose. 1980. J. Bacteriol. 141:521.Google Scholar
  12. 12.
    Mandels, M., F.W. Parrish and E.T. Reese. 1962. J. Bacteriol.Google Scholar
  13. 13.
    Reese, E.T. and A. Maguire. 1971. Dev. Indust. Microbiol. 12:212.Google Scholar
  14. 14.
    Reese, E.T. and M. Mandels. 1970. J. Bacteriol. 79:816.Google Scholar
  15. 15.
    Berg, B. and G. Pettersson. 1977. J. Appl. Bacteriol. 42:65.PubMedCrossRefGoogle Scholar
  16. 16.
    Binder, A. and T.K. Ghose. 1978. Biotechnol. Bioeng. 20:1187.CrossRefGoogle Scholar
  17. 17.
    Nisizawa, T., H. Suzuki, M. Nakayama and K. Nisizawa. 1971. J. Biochem. 70:375.PubMedGoogle Scholar
  18. 18.
    Nisizawa, T., H. Suzuki, and K. Nisizawa, 1971. J. Biochem. 70:387.PubMedGoogle Scholar
  19. 19.
    Gritzali, M. and R. D. Brown. 1979. Adv. Chem. Ser. 181:237.CrossRefGoogle Scholar
  20. 20.
    Okada, G. and K. Nisizawa. 1975. J. Biochem. 78:297.PubMedGoogle Scholar
  21. 21.
    Vaheri, M.P., M.E.O. Vaheri and V.S. Kauppinen. 1979. Eur.J. Appl. Microbiol. Biotechnol. 8:73.CrossRefGoogle Scholar
  22. 22.
    Steinberg, D. and G. Mandels. 1979. J. Bacteriol. 139:761.Google Scholar
  23. 23.
    Loewenberg, J.R. and CM. Chapman. 1977. Arch. Microbiol. 113:61.PubMedCrossRefGoogle Scholar
  24. 24.
    Yamane, K., H. Suzuki, M. Hirotani, H. Ozawa and K. Nisizawa. 1970. J. Biochem. 67:9.PubMedGoogle Scholar
  25. 25.
    Stewart, B.J. and J.M. Leatherwood. 1976. J. Bacteriol. 128: 609.PubMedGoogle Scholar
  26. 26.
    Eriksson, K.-E. and S.G. Hamp. 1978. Eur. J. Biochem. 90:183.PubMedCrossRefGoogle Scholar
  27. 27.
    Mandels, M., 1975. Biotechnol. Bioeng. Symp. 5:81.PubMedGoogle Scholar
  28. 28.
    Peitersen, N. 1978. Bioconversion of Cellulosic Substances into Energy, Chemicals and Microbial Proteins (Ghose, T.K., ed.) Indiana Institute of Technology, Delhi, India.Google Scholar
  29. 29.
    Nisizawa, T., H. Suzuki and K. Nisizawa. 1972. J. Biochem. 71:999.PubMedGoogle Scholar
  30. 30.
    Mandels, M., J. Weber and R. Parizek. 1971. Appl. Microbiol. 21:152.PubMedGoogle Scholar
  31. 31.
    Montenecourt, B.S. and D.E. Eveleight. 1977. Appl. Environ. Microbiol. 34:777.PubMedGoogle Scholar
  32. 32.
    Borgia, P. and P.S. Sypherd. 1977. J. Bacteriol. 130:812.PubMedGoogle Scholar
  33. 33.
    Ryu, D. and M. Mandels. 1980. Enzyme Microb. Technol. 2:91.CrossRefGoogle Scholar
  34. 34.
    Montenecourt, B.S., D.E. Eveleight, G.K. Elmund and J. Parcells. 1978. Biotechnol. Bioeng. 20:297.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • B. S. Montenecourt
    • 1
  • S. D. Nhlapo
    • 1
  • H. Trimiño-Vazquez
    • 1
  • S. Cuskey
    • 1
  • D. H. J. Schamhart
    • 1
  • D. E. Eveleigh
    • 1
  1. 1.Department of Biochemistry and Microbiology, Cook CollegeRutgers - The State University of New JerseyNew BrunswickUSA

Personalised recommendations