Advertisement

Acrylate Fermentations

  • A. J. Sinskey
  • M. Akedo
  • C. L. Cooney
Part of the Basic Life Sciences book series

Abstract

It is well recognized that non-renewable resources such as natural gas and oil are limited in availability. As a consequence, considerable effort is being expended to develop alternative technologies for the manufacture of industrial chemicals (ethanol, acetic acid, 2,3-butanediol, and acetone/butanol) which utilize renewable raw materials. It is in this context that we have sought to investigate the potential of microbially catalyzed reactions for the production of acrylic acid from a biomass which is one of renewable solar energy resources.

Keywords

Methylene Blue Acrylic Acid Propionic Acid Propionate Oxidation Anaerobic Fermentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldwin, R.L., W.A. Wood and R.S. Emery. Conversion of lactate-14C to propionate by the rumen microflora. J. Bacteriol. 83:907–913 (1962).PubMedGoogle Scholar
  2. 2.
    Baldwin, R.L., W.A. Wood and R.S. Emery. Lactate metabolism by Peptostreptococcus elsdenii: Evidence for lactyl coenzyme A dehydrase. Biochim. Biophys. Acta 97: 202–213 (1965).PubMedCrossRefGoogle Scholar
  3. 3.
    Cardon, B.P. and H.A. Barker. Two new amino-acid-fermenting bacteria, Clostridium propionioum and Diplococcus glyoinophilus. J. Bacteriol. 52:629–634 (1946).Google Scholar
  4. 4.
    Cardon, B.P. and H.A. Barker. Amino acid fermentations by Clostridium propionioum and Diplococcus glyoinophilus. Arch. Biochem. 12:165–180 (1947).PubMedGoogle Scholar
  5. 5.
    Dalai, R.K., M. Akedo, C.L. Cooney, and A.J. Sinskey. A microbial route for acrylic acid production. Biosources Digest 2:89–97 (1980).Google Scholar
  6. 6.
    Dolin, M.I. Survey of microbial electron transport mechanisms. In: I.C. Gunsalus and R.Y. Stanier (ed.). The Bacteria. Academic Press, New York, Vol. II, pp. 319–363 (1961a).Google Scholar
  7. 7.
    Dolin, M.I. Cytochrome-independent electron transport enzymes of bacteria. In: I.C. Gunsalus and R.Y. Stanier (ed.). The Bacteria. Academic Press, New York. Vol. II, pp. 425–460 (1961b).Google Scholar
  8. 8.
    Elsden, S.R., B.E. Volcani, F.M.C. Gilchrist, and D. Lewis. Properties of a fatty acid forming organism isolated from the rumen of sheep. J. Bacteriol. 72:681–689 (1956).PubMedGoogle Scholar
  9. 9.
    Goldfine, H. and E.R. Stadtman. Propionic acid metabolism. V. The conversion of ß-alanine to propionic acid by cell-free extracts of Clostridium propionioum. J. Biol. Chem. 235:2238–2245 (1960).PubMedGoogle Scholar
  10. 10.
    Hodgson, B. and J.D. McGarry. A direct pathway for the conversion of propionate into pyruvate in Moraxella Iwoffi. Biochem. J. 107:7–18 (1968).PubMedGoogle Scholar
  11. 11.
    Johns, A.T. The mechanism of propionic acid formation by Clostridium propionioum. J. Gen. Microbiol. 6:123–127 (1952).PubMedGoogle Scholar
  12. 12.
    Ladd, J.N. and D.J. Walker. The fermentation of lactate and acrylate by the rumen micro-organism LC. Biochem. J. 71:364–373 (1959).PubMedGoogle Scholar
  13. 13.
    Ladd, J.N. and D.J. Walker. Fermentation of lactic acid by the rumen microorganism, Peptostreptococcus elsdenii. Ann. N.Y. Acad. Sci. 119:1038–1045 (1965).PubMedCrossRefGoogle Scholar
  14. 14.
    Leaver, F.W. and H.G. Wood. Evidence from fermentation of labeled substrates which is inconsistent with present concepts of the propionic acid fermentation. J. Cell and Comp. Physiol. 41:suppl. 1. 225–240 (1953).CrossRefGoogle Scholar
  15. 15.
    Leaver, F.W., H.G. Wood and R. Stjernholm. The fermentation of three carbon substrates by Clostridium propionicum and Propionibacterium. J. Bacteriol. 70:521–530 (1955).PubMedGoogle Scholar
  16. 16.
    Lewis, D. and S.R. Elsden. The fermentation of L-threonine, L-serine, L-cysteine, and acrylic acid by a Gram-negative coccus. Biochem. J. 60:683–692 (1955).PubMedGoogle Scholar
  17. 17.
    Morris, J.G. The physiology of obligate anaerobiosis. In: A.H. Rose and D.W. Tempest (ed.). Advances in Microbial Physiology. Academic Press, New York. Volume 12. pp. 169–246 (1975).Google Scholar
  18. 18.
    Sokatch, J.R., L.E. Sanders and V.P. Marshall. Oxidation of methylmalonate semialdehyde to propionyl-coenzyme A in Pseudomonas aeruginosa grown on valine. J. Biol. Chem. 243: 2500–2506 (1968).PubMedGoogle Scholar
  19. 19.
    Stadtman, E.R. and H.A. Barker. Fatty acid synthesis by enzyme preparations of Clostridium kluyveri. VI. Reactions of acyl phosphates. J. Biol. Chem. 184:769–793 (1950).PubMedGoogle Scholar
  20. 20.
    Stadtman, E.R. Studies on the biochemical mechanism of fatty acid oxidation and synthesis. Record Chem. Progr. Kresge-Hooker Sci. Lib. 15:1–17 (1954).Google Scholar
  21. 21.
    Stadtman, E.R. Fermentations de l’acide propionique. Bull. Sté. Chim. Biol. 37:931–938 (1955a).Google Scholar
  22. 22.
    Stadtman, E.R. The enzymatic synthesis of (3-alanyl coenzyme A. J. Am. Chem. Soc. 77:5765–5766 (1955b).CrossRefGoogle Scholar
  23. 23.
    Stadtman, E.R. Propionate oxidation by cell-free extracts of Clostridium propionioum. Federation Proc. 15:360–361 (1956).Google Scholar
  24. 24.
    Stadtman, E.R. and P.R. Vagelos. Propionic acid metabolism. Proceedings of the International Symposium on Enzyme Chemistry, Tokyo and Kyoto, 1957. Maruzen, Tokyo, pp. 86–92 (1958).Google Scholar
  25. 25.
    Vagelos, P.R. and E.R. Stadtman. Enzymatic conversion of acrylyl-pantetheine to beta-alanyl-pantetheine and lactyl-pantetheine. Abstracts of papers of the 131st meeting of the American Chemical Society, American Chemical Society, Washington, pp. 24C-25C (1957).Google Scholar
  26. 26.
    Vagelos, P.R., J.M. Earl and E.R. Stadtman. Propionic acid metabolism. I. The purification and properties of acrylyl coenzyme A aminase. J. Biol. Chem. 234:490–497 (1959).PubMedGoogle Scholar
  27. 27.
    Wallnöfer, P., R.L. Baldwin and E. Stagno. Conversion of 14C-labeled substrates to volatile fatty acids by the rumen microbiota. Appl. Microbiol. 14:1004–1010 (1966).PubMedGoogle Scholar
  28. 28.
    Wallnöfer, P. and R.L. Baldwin. Pathway of propionate formation in Bacteroides ruminicola. J. Bacteriol. 93:504–505 (1967).PubMedGoogle Scholar
  29. 29.
    Wegener, W.S., H.C. Reeves and S.J. Ajl. Propionate oxidation in Escherichia coli. Arch. Biochem. Biophys. 121:440–442 (1967).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • A. J. Sinskey
    • 1
  • M. Akedo
    • 1
  • C. L. Cooney
    • 1
  1. 1.Department of Nutrition and Food ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations