Advertisement

Formation of Hydrocarbons by Bacteria and Algae

  • Thomas G. Tornabene
Part of the Basic Life Sciences book series

Abstract

The chemical investigation of biologically synthesized hydrocarbons did not begin early in the history of the systematic study of fats. All the neutral or highly non-polar lipids were included in a category of compounds designated as waxes. The waxes were monoesters of fatty acids and long chain alcohols, hydrocarbons, long chain alcohols, and high molecular weight compounds. Systematic investigations into the derivation and chemical nature of the constituents of waxes was started in 1942 by the American Petroleum Institute Project 43 which was designed to determine a) the part played by microorganisms in the formation of petroleum, b) the type hydrocarbons synthesized as animal and plant products to the extent and variety necessary to be able to form crude oil and c) whether radioactive and thermal sources of energy can transform organic matter into petroleum. The rationale for this project was apparently based on a number of factors. In 18 99 it was proposed that complex organisms, such as trees, fish and animal fats could be a direct source of the hydrocarbons in petroleum (1). In 1906, the isoprenoid hydrocarbon squalene was isolated as the major constituent of shark liver oil (2–4). Diatom nobs in tertiary opal shales were reported in 1926 (5).

Keywords

Green Alga Brown Alga Botryococcus Braunii Methanosarcina Barkeri Methylococcus Capsulatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kramer, G., and A. Spilker. 1899. Ber 32: 2940.Google Scholar
  2. 2.
    Tsujimoto, M., 1906. Kogyo Kagaku Zasshi. 9:953.CrossRefGoogle Scholar
  3. 3.
    Heilbron, I.M., W.M. Owens and I.A. Simpson. 1929. J.Chem.Soc.8 73.Google Scholar
  4. 4.
    Karrer, P. and A. Helfenstein. 1931. Helv.Chim.Acta. 14:78.CrossRefGoogle Scholar
  5. 5.
    Tolman, C.F., 1926. Summary of results of symposium on the siliceous shales and the origin of oil in Calif.Geol.Soc. of Amer. Cordelleian Section.Google Scholar
  6. 6.
    Becking, L.B. and C.F. Tolman, H.C. McMillin, J. Field and T. Hashimoto. 1927. Econ. Geol., 22:356.CrossRefGoogle Scholar
  7. 7.
    Trask, P.D., 1923. Origin and env. of source sediments of petroleum, Gulf Publ. Co., Houston, p. 233.Google Scholar
  8. 8.
    Whitmore, F.C, 1943, Review of A.P.I. Research project 43B: Fundamental Research on Occurrence and recovery of petroleum, Amer. Petrol. Inst., N.Y. p 124.Google Scholar
  9. 9.
    Landes, K.K. 1951. Petroleum Geology. Wiley, N.Y., p 135.Google Scholar
  10. 10.
    Zobell, C.E., 1946. Bact. Rev. 10:1.Google Scholar
  11. 11.
    Zobell, C.E., 1945. Science, 102: 346.CrossRefGoogle Scholar
  12. 12.
    Stone, R.W. and C.E. Zobell, 1952. Ind. Eng. Chem; 44:2564.CrossRefGoogle Scholar
  13. 13.
    Thayer, L.A., 1931. Bull. Amer. Assoc. Petro. Geol., 15: 441.Google Scholar
  14. 14.
    Knebel, G.M., 1946–7. Review of A.P.I, project 43B. Fundamental Research on Occurrence and recovery of Petrol. Amer. Petrol. Inst., N.Y. p. 93.Google Scholar
  15. 15.
    Eglington, G., and M. Calvin. 1967. Chemical fossils. Scientific Amer. 216: 32.CrossRefGoogle Scholar
  16. 16.
    Maxwell, J.R., A.G. Douglas, G. Eglington, and A. McCormick. 1968. Phytochem 7: 2157.CrossRefGoogle Scholar
  17. 17.
    Brown, A.C. and B.A. Knight. 1969. Phytochem. 8:543.CrossRefGoogle Scholar
  18. 18.
    Blackburn, K.B., and B.N. Temperley, 1936. Trans. Roy Soc. Edinburgh, 58: 841.Google Scholar
  19. 19.
    Lee, R.F., and A.R. Loeblich. 1971. Phytochem. 10: 593.CrossRefGoogle Scholar
  20. 20.
    Caccamese, S. and K. L. Rinehart, Jr., 1978. Experlentia 34: 1129.CrossRefGoogle Scholar
  21. 21.
    Youngblood, W.W., and M. Blumer. 1973. Marine Biol. 21: 163.CrossRefGoogle Scholar
  22. 22.
    Gregson, R.P., R. Kazlauskas, P.T. Murphy and R. J. Wells. 1977. Aust. J. Chem. 30.: 2527.CrossRefGoogle Scholar
  23. 23.
    Blumer, M., M. M. Mullin and R.R.L. Guillard. 1970. Marine Biol. 6: 226.CrossRefGoogle Scholar
  24. 24.
    Lee, R.F., J.C Nevenzel, G.A. Paffenhofer, A.A. Benson, S. Patton and T.E. Kavanagh. 1970. Biochim. Biophys. Acta. 202: 386.PubMedGoogle Scholar
  25. 25.
    Wright, J.L.C, 1980. Phytochem. 19: 143.CrossRefGoogle Scholar
  26. 26.
    Blumer, M., R.R.L. Guillard and T. Chase. 1971. Marine Biol. 8:183.CrossRefGoogle Scholar
  27. 27.
    Youngblood, W.W., M. Blumer, R.L. Guillard and F. Fiore. 1971. Marine Biol. 8:190.CrossRefGoogle Scholar
  28. 28.
    Shaw, D.G. and J.N. Wiggs. 1979. Phytochem. 18: 2025.CrossRefGoogle Scholar
  29. 29.
    Ben-Amotz, A., and M. Avron. 1973. Plant Physiol. 51: 875.PubMedCrossRefGoogle Scholar
  30. 30.
    Ben-Amotz, A. 1978. In Energetics and structure of Halophilic Microorganism. S.R. Caplan and M. Ginzburg, eds. Elsevier/North-Holland Biomedical press, p. 529.Google Scholar
  31. 31.
    Ben-Amotz, A. and M. Avron. 1980. In Genetic Engineering of Osmoregulation. D.W. Rains, R.C. Valentine and A. Hollaender, Plenum Publ. Corp., N.Y.,N.Y. p. 91.CrossRefGoogle Scholar
  32. 32.
    Tornabene, T.G., G. Holzer and S.L. Petersen. 1980. Biochem. Biophy. Res. Comm. 96: 1349.CrossRefGoogle Scholar
  33. 33.
    Gelpi, E., H. Schneider, J. Mann and J. Oro. 1970. Phytochem. 9: 603.CrossRefGoogle Scholar
  34. 34.
    Han, J., E.D. McCarthy, M. Calvin and M.H. Benn. 1968. J. Chem. Soc. (c), 2785.Google Scholar
  35. 35.
    Fehler, S.W.G., and R.J. Light. 1970. Biochemistry, 9: 418.PubMedCrossRefGoogle Scholar
  36. 36.
    Han, J., H.W.-S. Chan and M. Calvin. 1969. J. Amer. Chem. Soc. 91: 5156.CrossRefGoogle Scholar
  37. 37.
    Han, J., and M. Calvin. 1969. Proc. Nat. Acad. Sci. 64: 436.PubMedCrossRefGoogle Scholar
  38. 38.
    Knight, B.A., A.C. Brown, E. Conway, and B.S. Middleditch. 1970. Phytochem 9:1317.CrossRefGoogle Scholar
  39. 39.
    Cox, R.E., A.L. Burlingame and D.W. Wilson. 1973. J. Chem. Soc. Chem. Comm. 284.Google Scholar
  40. 40.
    Winters, K., P.L. Parker and C. Van Baalen. 1969. Science 163: 467.PubMedCrossRefGoogle Scholar
  41. 41.
    Han, J. and M. Calvin. 1969. Proc. Nat. Acad. Sci. 64: 436.PubMedCrossRefGoogle Scholar
  42. 42.
    Tornabene, T.G., M. Kates, E. Gelpi and J. Oro. 1969. J. Lipid Res. 10: 294.PubMedGoogle Scholar
  43. 43.
    Tornabene, T.G. 1976. In Microbial Energy Conversion, H.G. Schlegel and J. Barnea eds. Oxford Engl: Pergamon Press p. 281.Google Scholar
  44. 44.
    Tornabene, T.G., T.A. Langworthy, G. Holzer and J. Oro. 1979. J. Mol. Evol. 13: 73.PubMedCrossRefGoogle Scholar
  45. 45.
    Holzer, G., J. Oro and T.G. Tornabene. 1979. J. Chromatog. 196: 795.CrossRefGoogle Scholar
  46. 46.
    Goldberg, I., and I. Shechter. 1978. J Bacteriol, 135: 717.PubMedGoogle Scholar
  47. 47.
    Faulkner, D.J. and R.J. Andersen. 1974. In The Sea, Vol. 5, E.D. Goldberg ed., John Wiley and Sons. N.Y. p. 679.Google Scholar
  48. 48.
    Bird, C.W., J.M. Lynch, F.G. Pirt, W.W. Ried, C.J.W. Brooks and B.S. Middleditch. 1971. Nature 230: 473.PubMedCrossRefGoogle Scholar
  49. 49.
    Bouvier, P., M. Rohmer, P. Benveniste and G. Ourisson, 1976. Biochem. J. 159: 267.PubMedGoogle Scholar
  50. 50.
    Amdur, G.H., E.I. Szabo and S.S. Socransky. 1978. J. Bacteriol. 135:161.PubMedGoogle Scholar
  51. 51.
    Suzue, G., K. Tsukada and S. Tanaka. 1968. Biochim. Biophys. Acta 164: 88.PubMedGoogle Scholar
  52. 52.
    Weeks, O.B., and M.D. Francesconi. 1978. J. Bacteriol. 136: 614.PubMedGoogle Scholar
  53. 53.
    Maudinas, B. and J. Villoutriex. 1976. C. R. Acad. Sci. Ser. D. 278: 2995.Google Scholar
  54. 54.
    Tornabene, T.G., 1978. J. Mol. Evol. 11: 253.PubMedCrossRefGoogle Scholar
  55. 55.
    McCarthy, E.D. and M. Calvin. 1967. Tetrahedron. 23: 2609.CrossRefGoogle Scholar
  56. 56.
    Han, J. and M. Calvin. 1969. Geochim. Cosmochim. Acta. 33: 733.CrossRefGoogle Scholar
  57. 57.
    Spyckerelle, C, P. Arpino and G. Ourisson.1972. Tetrahedron. 28: 5703.CrossRefGoogle Scholar
  58. 58.
    Spyckerelle, C, P. Arpino and G. Ourisson. 1978. Tetrahedron Letters, 595.Google Scholar
  59. 59.
    Spyckerelle, C. P. Arpino and G. Ourisson. 1978. Nature 271: 436.CrossRefGoogle Scholar
  60. 60.
    Moldowan, M., W.K. Seifert. 1979. Science 204: 169.PubMedCrossRefGoogle Scholar
  61. 61.
    Kloos, W.E., T.G. Tornabene and K.H. Schleifer. 1974. Intl. J. Syst Bacteriol. 24:79.CrossRefGoogle Scholar
  62. 62.
    Albro, P.W. and C.K. Huston. 1964. J. Bacteriol. 88: 981.PubMedGoogle Scholar
  63. 63.
    Tornabene, T.G., E. Gelpi, and J. Oro. 1967. J. Bacteriol. 94:333.PubMedGoogle Scholar
  64. 64.
    Tornabene, T.G., E.O. Bennett and J. Oro. 1967. J. Bacteriol. 94: 344.PubMedGoogle Scholar
  65. 65.
    Tornabene, T.G., and J. Oro. 1967. J. Bacteriol. 94:349.PubMedGoogle Scholar
  66. 66.
    Tornabene, T.G., S. J. Morrison and W. E. Kloos. 1970. Lipids 5: 929,PubMedCrossRefGoogle Scholar
  67. 67.
    Tornabene, T.G. and S.P Markey. 1971. Lipid 6: 190.CrossRefGoogle Scholar
  68. 68.
    Morrison, S.J., T.G. Tornabene and W.E. Kloos. 1971. J. Bacteriol. 108: 353.PubMedGoogle Scholar
  69. 69.
    Albro, P.W., 1971. J. Bacteriol. 108: 213.PubMedGoogle Scholar
  70. 70.
    Jones, J.G., 1969. J. Gen. Microbiol. 59: 145.PubMedGoogle Scholar
  71. 71.
    Tornabene, T.G. and S.L. Peterson. 1978. Can. J. Microbiol. 24: 525.PubMedGoogle Scholar
  72. 72.
    Naccarato, W.F., J.R. Gilbertson and R. A. Gelman. 1974. Lipids 9: 322.PubMedCrossRefGoogle Scholar
  73. 73.
    Davis, J.P. 1968. Chem. Geol. 3: 155.CrossRefGoogle Scholar
  74. 74.
    Jankowski, G.J. and C.E. Zobell. 1948. J. Bacteriol. 47: 447.Google Scholar
  75. 75.
    Jones, J.G., and B.V. Young. 1970. Arch. Mikrobiol. 70: 82.PubMedCrossRefGoogle Scholar
  76. 76.
    LaCave, C., J. Asselineau and R. Toubiana. 1967. Eur. J. Biochem. 2: 37.PubMedCrossRefGoogle Scholar
  77. 77.
    Oro, J., T.G. Tornabene, P.W. Nooner, and E. Gelpi. 1967. J. Bacteriol. 93: 1811.PubMedGoogle Scholar
  78. 78.
    Sanderman, W., and W. Schweers. 1960. Chem. Ber. 93: 2266.CrossRefGoogle Scholar
  79. 79.
    Volpe, J.J., and P.R. Vagelos. 1973. Ann. Rev. Biochem. 42: 21.PubMedCrossRefGoogle Scholar
  80. 80.
    Bloch, K. 1977. Ann. Rev. Biochem. 46: 263.PubMedCrossRefGoogle Scholar
  81. 81.
    Blanchardie, D. and C. Cassagne. 1976. C. R. Acad. Sc. Paris Ser D. 282: 227.Google Scholar
  82. 82.
    Blumer, M. and D.W. Thomas. 1965. Science 148: 370.PubMedCrossRefGoogle Scholar
  83. 83.
    Albro, P.W. and J.C. Dittmer. 1969. Biochem. 8: 394.CrossRefGoogle Scholar
  84. 84.
    Ibid, p. 953.Google Scholar
  85. 85.
    Ibid, p. 1913.Google Scholar
  86. 86.
    Ibid, p. 3317.Google Scholar
  87. 87.
    Albro, P.W., T.D. Meehan, and J.C. Dittmer. 1970. Biochem. 9: 1893.CrossRefGoogle Scholar
  88. 88.
    Albro, P.W., 1976. In Chemistry of Natural Waxes, P. E. Kolatukuddy, ed. pp 419. Elsevier Publ. Co., Amsterdam.Google Scholar
  89. 89.
    Tornabene, T.G., unpubl. results.Google Scholar
  90. 90.
    Albro, P.W. and J.G. Dittmer. 1970. Lipids 5: 320.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Thomas G. Tornabene
    • 1
  1. 1.Solar Energy Research InstituteGoldenUSA

Personalised recommendations