Some Aspects of Thermophilic and Extreme Thermophilic Anaerobic Microorganisms

  • L. G. Ljungdahl
  • F. Bryant
  • L. Carreira
  • T. Saiki
  • J. Wiegel
Part of the Basic Life Sciences book series


An interest for industrial use of thermophilic, anaerobic bacteria has clearly emerged since the 1973 oil shortages. Such bacteria are capable of converting biomass, mostly cellulose, hemicellulose and starch to desirable industrial feedstock chemicals such as acetate, ethanol, acetone, butanol, etc. (1). The thermophilic bacteria are also convenient sources of enzymes, which are more thermostable and more resistant toward denaturation when compared with corresponding enzymes from mesophilic microorganisms (2). Clearly, enzymes from thermophiles have properties which are desirable when considering industrial applications. The idea of using thermophilic microorganisms industrially is not new. For instance, several British patents since 1920 deal with fermentations of cellulose using thermophilic, aerobic, as well as anaerobic, microorganisms (3). Curiously, these efforts were to produce ethanol from renewable resources to be used as liquid fuel for combustion engines. This idea has now been rediscovered some sixty or more years after it was formulated. The cycle is complete. The problem for today is not whether we can or can not ferment biomass to desirable products but rather which are the best microorganisms to use, how can we improve them, and what is the best technology.


Alcohol Dehydrogenase Thermophilic Bacterium Formate Dehydrogenase Thermophilic Microorganism Extreme Thermophile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zeikus, J.G. (1980) Chemical and fuel production by anaerobic bacteria. Annu. Rev. Microbiol. 34, 423–464.PubMedCrossRefGoogle Scholar
  2. 2.
    Ljungdahl, L.G. (1979) Physiology of thermophilic bacteria. Adv. Microbial Physiol. 19, 149–243.CrossRefGoogle Scholar
  3. 3.
    Lymn, A.H., and Langwell, H. (1923) Discussion on the action of bacteria on cellulosic materials. J. Soc. Chem. Ind. pp280T–283T.Google Scholar
  4. 4.
    Sandegren, E., Enebo, L. and Ljungdahl, L.G. (1953) Investigations on cellulase of barley and of bacteria connected with thermophilic cellulose fermentation. Proceedings from II Congress International des Industries de Fermentations. pp 139–146, Bruxelles, Belgium.Google Scholar
  5. 5.
    Ljungdahl, L.G. and Wood, H.G. (1969) Total synthesis of acetate from CO2 by heterotrophic bacteria. Annu. Rev. Microbiol. 23, 515–538.PubMedCrossRefGoogle Scholar
  6. 6.
    Ljungdahl, L.G., and Wood, H.G. (1980) Acetate Biosynthesis. in “Vitamin B12” (Dolphin, D. ed.) John Wiley and Sons, Inc. N.Y. In press.Google Scholar
  7. 7.
    Wiegel, J., Ljungdahl, L.G. and Rawson, J.R. (1979) Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfurioum. J. Bacterio.l. 139, 800–810.Google Scholar
  8. 8.
    Wiegel, J., and Ljungdahl, L.G. (1981) Thermoanaerobacter ethanolicus. gen. nov., spec. nov. A new extreme thermophilic anaerobic bacterium. Arch. Microbiol. In press.Google Scholar
  9. 9.
    Fontaine, F.E., Peterson, W.H., McCoy, E., Johnson, M.J., and Ritter, G.J. (1942) A new type of glucose fermentation by Clostridium thermoaceticum. n. sp. J. Bacteriol. 43, 701–715.PubMedGoogle Scholar
  10. 10.
    Andreesen, J.R., Schaupp, A., Neurauter, C, Brown, A., and Ljungdahl, L.G. (1973) Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticumi. Effect of metals on growth yield, enzymes, and the synthesis of acetate from CO2.Google Scholar
  11. 11.
    Barker, H.A. (1944) On the role of carbon dioxide in the metabolism of Clostridium thermoaceticum.. Proc Nat. Acad. Sci. U.S. 30, 88–90.CrossRefGoogle Scholar
  12. 12.
    Wood, H.G. (1952) A study of carbon dioxide fixation by mass determination of the types of C13-acetate. J. Biol. Chem. 194, 905–931.PubMedGoogle Scholar
  13. 13.
    Schaupp, A., and Ljungdahl, L.G. (1974) Purification and properties of acetate kinase from Clostridium thermoaceticum.. Arch. Microbiol. 100, 121–129.PubMedCrossRefGoogle Scholar
  14. 14.
    Schulman, M., Ghambeer, R.K., Ljungdahl, L.G. and Wood, H.G. (1973). Total synthesis of acetate from CO2. VII. Evidence with Clostridium thermoaceticum. that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2. J. Biol. Chem. 248, 6255–6261.PubMedGoogle Scholar
  15. 15.
    Diekert, G.B., and Thauer, R.K. (1978) Carbon monoxide oxidation by Clostridium thermoaceticum. and Clostridium formicoaceticum.. J. Bacteriol. 136, 597–606.PubMedGoogle Scholar
  16. 16.
    Andreesen, J.R., Gottschalk, G., and Schlegel, H.G. (1970) Clostridium formicoaceticum. nov. spec. Isolation, description and distinction from C. aceticum. and C. thermoaceticum.. Arch. Mikrobiol. 72, 154–174.PubMedCrossRefGoogle Scholar
  17. 17.
    O’Brien, W.E., and Ljungdahl, L.G. (1972) Fermentation of fructose and synthesis of acetate from carbon dioxide by Clostridium formicoaceticum.. J. Bacteriol. 109, 626–632.PubMedGoogle Scholar
  18. 18.
    Diekert, G., and Thauer, R.K. (1980) The effect of nickel on carbon monoxide dehydrogenase formation in Clostridium thermoaceticum. and Clostridium formicoaceticum.. FEMS Microbiol. Lett. 7, 187–189.CrossRefGoogle Scholar
  19. 19.
    Drake, H.L., Hu, S.-I., and Wood, H.G. (1980) Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermoaceticum.. J. Biol. Chem. 255, 7174–7180.PubMedGoogle Scholar
  20. 20.
    Drake, H.L., Hu, S.-I. and Wood, H.G. (1979) Acetate synthesis by Clostridium thermoaceticum.. Abstr. 04–3–599, p. 279. XIth Inter. Cong. Biochemistry, Toronto, Canada and Personal Communication.Google Scholar
  21. 21.
    Andreesen, J.R. and Ljungdahl, L.G. (1973) Formate dehydrogenase of Clostridium thermoaceticum.: Incorporation of selenite, molybdate and tungstate on the enzyme. J. Bacteriol. 116, 867–873.PubMedGoogle Scholar
  22. 22.
    Ljungdahl, L.G. and Andreesen, J.R. (1976) Reduction of CO2 to acetate in homoacetate fermenting Clostridia and the involvement of tungsten in formate dehydrogenase. In “Microbial Production and Utilization of Gases” (Schlegel, H., Gottschal, G. and Pfennig, N., eds.) pp. 163–172. E. Goltze K. G. Gottinger.Google Scholar
  23. 23.
    Saiki, T., Shackleford, G., and Ljungdahl, L.G. (1981) Composition of tungsten-selenium containing formate dehydrogenase from Clostridium thermoaceticum.. In “Proc. Symp. on Selenium in Biology and Medicine” (Martin, J.L. ed.) Chapter 20. AVI Publ. Comp. Westport, Conn. In press.Google Scholar
  24. 24.
    Yang, S.-S., Ljungdahl, L.G. and LeGall, J. (1977) A four-iron, four-sulfide ferredoxin with high thermostability from Clostridium thermoaceticum.. J. Bacteriol. 130, 1084–1090.PubMedGoogle Scholar
  25. 25.
    Yang, S.-S., Lyngdahl, L.G., DerVartanian, D.V. and Watt, G.D. (1980) Isolation and characterization of two rubredoxins from Clostridium thermoaceticum.. Biochim. Biophys. Acta. 590, 24–33.PubMedCrossRefGoogle Scholar
  26. 26.
    Yang, S.-S., and Ljungdahl, L.G. (1977) Properties of two rubrodoxins and a NAD(P)H-rubredoxin reductase isolated from Clostridium thermoaceticum.. Abstr. K. 135 Annu. Meet. Am. Soc. Microbiol. New Orleans.Google Scholar
  27. 27.
    Gottwald, M., Andreesen, J.R., LeGall, J., and Ljungdahl, L.G. (1975) Presence of cytochrome and menaquinone in Clostridium formicoaceticum. and Clostridium thermoaceticum.. J. Bacteriol. 122, 325–328.PubMedGoogle Scholar
  28. 28.
    Poston, J.M. and Stadtman, E.R. (1967) The conversion of carbon dioxide to acetate. III. Demonstration of ferredoxin in the system converting Co-14CH3-cobalamin to acetate. Biochem. Biophys. Res. Commun. 26, 550–555.PubMedCrossRefGoogle Scholar
  29. 29.
    Thauer, R.K. (1972) CO2-reduction to formate by NADPH. The initial step in the total synthesis of acetate from CO2 in Clostridium thermoaceticum.. FEBS Lett. 27, 111–115.PubMedCrossRefGoogle Scholar
  30. 30.
    Tansey, M.R., and Brock, T.D. (1978) Microbial life at high temperatures: Ecological aspects. In “Microbial Life in Extreme Environments” (D.J. Kushner, ed) pp. 159–216, Academic Press, London.Google Scholar
  31. 31.
    Wiegel, J. and Ljungdahl, L.G. (1979) Ethanol as fermentation product of extreme thermophilic, anaerobic bacteria. In 4th Symp. Technische Mikrobiologie (Dellweg, H. ed) pp. 117–127, Verlag Versuchs-und Lehranstalt fur Spiritusfabrikation und Fermentationstechnologie, Berlin.Google Scholar
  32. 32.
    Klaushofer, H. and Parkkinen, E. (1965) Zur Frage der Bedeutung aerober und anaerober thermophiler Sporenbildner als Infectionsursache in Rubenzucker-fabriken. I. Clostridium thermohydrosulfuricum. eine neue Art eines saccharoseabbauenden thermophilen Schwefelwasser stoffbildenden Clostridiums. Z. Zuckerind. Boehm. 15, 445–449.Google Scholar
  33. 33.
    Hollaus, F. and Sleutr, U. (1972) On the taxonomy and fine structure of some hyper thermophilic saccharolytic Clostridia. Arch. Microbiol. 88, 129–146.Google Scholar
  34. 34.
    Zeikus, J.G. (1981) This symposium.Google Scholar
  35. 35.
    Haberstich, H.U. and Zuber, H. (1974) Thermoadation of enzymes in thermophilic and mesophilic cultures of Bacillus stearothermophilus. and Bacillus caldotenax.. Arch. Microbiol. 98, 275–287.PubMedCrossRefGoogle Scholar
  36. 36.
    O’Farrell, P.H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021.PubMedGoogle Scholar
  37. 37.
    Wiegel, J. and Ljungdahl, L.G. (1979) Isolation and characterization of a new extreme thermophilic anaerobic bacterium. Abstr. I 63 Annu. Meet. Am. Soc. Microbiol. Los Angeles.Google Scholar
  38. 38.
    Wiegel, J. and Ljungdahl, L.G. (1981) Thermoanaerobacter ethanolicus. gen. nov., spec, nov., a new extreme thermophilic anaerobic bacterium. Arch. Microbiol. In press.Google Scholar
  39. 39.
    Bryant, F.O., and Ljungdahl, L.G. (1981) NADP-dependent alcohol dehydrogenase from Thermoanaerobacter ethanolicus.. Abstr. K44 Annu. Meet. Am. Soc. Microbiol. Dallas.Google Scholar
  40. 40.
    Branden, C.-I., Jornvall, H., Eklund, H., and Furngren, B. (1975) Alcohol dehydrogenases. In “The Enzyme” Vol. 11, Part A (Boyer, P.D. ed)pp. 103–190, Academic Press, New York.Google Scholar
  41. 41.
    Eriksson, K.E. (1981) This symposium.Google Scholar
  42. 42.
    Peck, H.D., Jr. (1981) This symposium.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • L. G. Ljungdahl
    • 1
  • F. Bryant
    • 1
  • L. Carreira
    • 1
  • T. Saiki
    • 1
  • J. Wiegel
    • 1
  1. 1.Department of BiochemistryUniversity of GeorgiaAthensUSA

Personalised recommendations