Advertisement

Anaerobic Fermentations of Cellulose to Methane

  • H. D. PeckJr.
  • M. Odom
Part of the Basic Life Sciences book series

Abstract

The microbial populations responsible for the anaerobic degradation of cellulosic biopolymers appear to be taxonomically diverse and variable, but the basic pattern of these complex fermentations is similar wherever they occur. This in turn suggests that the common denominator of these microbial populations is overall physiology rather than taxonomy. For example, if one compares the microorganisms found in mesophilic and thermophilic fermentations of cellulose to CO2 and CH4, individual isolates from these fermentations will, by and large, be taxonomically distinct, but physiologic counterparts in terms of the overall reactions catalyzed can be readily identified in each fermentation. This is perhaps implicit in the general concept of a “food chain”; however, within this single constraint, it allows for extensive diversity in terms of pH, temperature, products, product composition, substrates, inhibitors, product and substrate tolerance and nutrition. This diversity is currently the object of a considerable research effort which should define the environmental parameters for the degradation of complex cellulosic biopolymers and lead to the isolation of new types of bacteria.

Keywords

Anaerobic Digestor Sulfate Reduce Bacterium Fermentation Product Formate Dehydrogenase Anaerobic Fermentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bryant, M.P. (1979) J. Anim. Sci. 48.: 193.Google Scholar
  2. 2.
    Hungate, R.E. (1967) Arch. Mikrobiol. 59.: 158.PubMedCrossRefGoogle Scholar
  3. 3.
    Bryant, M.P., E.A. Wolin, M.J. Wolin and R.S. Wolfe (1967) Arch. Microbiol. 59.: 20.CrossRefGoogle Scholar
  4. 4.
    Wolin, M.J. (1975) in “Microbial Production and Utilization of Gases” (Ed. H.G. Schlegel, G. Gottschalk and N. Pfennig) E. Goltz KG, Gottingen, p. 141.Google Scholar
  5. 5.
    Allison, M.J., M.P. Bryant and R.N. Doetsch (1958) Sci. 128.: 474–475.CrossRefGoogle Scholar
  6. 6.
    Wiegel, J. and L.G. Ljungdahl (1979) in Technische Mikrobiologie (Ed. H. Dellweg) Berlin, p. 117.Google Scholar
  7. 7.
    Hungate, R.E. (1950) Bacteriol. Rev. 14.: 1.PubMedGoogle Scholar
  8. 8.
    Khan, A.W., J.H. Saddler, G.B. Petel, J.R. Colvin and S.M. Martin (1980) FEMS Microbiol. Lett. 1.:47.CrossRefGoogle Scholar
  9. 9.
    Bryant, M.P. (1958) J. Bacteriol. 76.: 529.PubMedGoogle Scholar
  10. 10.
    McBee, R.H. (1950) Bacteriol. Rev. 14: 51.PubMedGoogle Scholar
  11. 11.
    Dilworth, G., J. Wiegel, L.G. Ljungdahl and H.D. Peck, Jr. (1980) in “Colloque Celluloyse Microbienne”, Marseille, p. 111.Google Scholar
  12. 12.
    Ward, D.M. and G.J. Olson (1980) Appl. Environ. Microbiol. 40.: 67.PubMedGoogle Scholar
  13. 13.
    Martens, C.S. and R.A. Berne (1974) Sci. 185.: 1167.CrossRefGoogle Scholar
  14. 14.
    Boone, D.R. and M.P. Bryant (1980) Appl. Environ. Microbiol. 40.: 626.PubMedGoogle Scholar
  15. 15.
    Postgate, J.R. (1978) “The Sulphate Reducing Bacteria”, Cambridge Univ. Press.Google Scholar
  16. 16.
    Badziong, W., R.K. Thauer, and J.G. Zeikus (1978) Arch. Microbiol. 116.: 41.PubMedCrossRefGoogle Scholar
  17. 17.
    Widdel, F. and N. Pfenning (1977) Arch. Microbiol. 112.: 119.PubMedCrossRefGoogle Scholar
  18. 18.
    Pfenning, N. and H. Bibel (1976) Arch. Microbiol. 110.: 3.CrossRefGoogle Scholar
  19. 19.
    Batch, W., E.S. Schoberth, R.S. Tanner and R.S. Wolfe (1977) Ent. J. Syst. Bacteriol. 27.: 355.CrossRefGoogle Scholar
  20. 20.
    Braun, M., S. Schoberth and G. Gottschalk (1979) Arch. Microbiol. 120.: 201.PubMedCrossRefGoogle Scholar
  21. 21.
    Iannotti, E.L., D. Kafkewitz, M.J. Wolin and M.P. Bryant (1973) J. Bacteriol. 114.: 1231.PubMedGoogle Scholar
  22. 22.
    Wolin, M.J. (1975) Am. J. Clin. Nutr. 27.: 1320.Google Scholar
  23. 23.
    Reddy, C.A., M.P. Bryant and M.J. Wolin (1972) J. Bacteriol. 109.: 539.PubMedGoogle Scholar
  24. 24.
    Hasan, M. and J.B. Hall (1975) J. Gen Microbiol. 87.: 120.PubMedGoogle Scholar
  25. 25.
    Bryant, M.P., L.L. Campbell, C.A. Reddy and M.R. Crabill (1977) J. Bacteriol. 33.: 1162.Google Scholar
  26. 26.
    Liu, C.L. and H.D. Peck, Jr. (1981) J. Bacteriol (in press).Google Scholar
  27. 27.
    Peck, H.D., Jr. (1962) Bacteriol. Rev. 26.: 67.PubMedGoogle Scholar
  28. 28.
    Mclnerney, M.J., M.P. Bryant and N. Pfenning (1997) Arch. Microbiol. 122.:129.CrossRefGoogle Scholar
  29. 29.
    Abram, J.W. and D.B. Nedwell (1978) Arch. Microbiol. 117.: 93.PubMedCrossRefGoogle Scholar
  30. 30.
    Cappenberg, T.E. (1974) Antonie Van Leeuwenhuck. J. Microbiol. Serol. 40.:285.CrossRefGoogle Scholar
  31. 31.
    Jurgensen, B.B. (1978) Geomicrobiol. 1.: 49.CrossRefGoogle Scholar
  32. 32.
    Mah, R.A., D.M. Ward, L. Baresi and T.L. Glass (1977) Ann. Rev. Microbiol. 31.: 309.CrossRefGoogle Scholar
  33. 33.
    Smith, P.H. and R.A. Mah (1966) Appl. Microbiol. 14: 368.PubMedGoogle Scholar
  34. 34.
    Hungate, R.E. (1966) “The Rumen and Its Microbes..” Academic Press.Google Scholar
  35. 35.
    Hungate, R.E. (1976) in Microbial Production and Utilization of Gases. (Ed. H.G. Schlegel, G. Gottschalk and N. Pfenning) P. 119.Google Scholar
  36. 36.
    Smith, M.R. and R.A. Mah (1978) Appl. Environ, Microbiol. 36.: 870.Google Scholar
  37. 37.
    Zehnder, A.J.B., B.A. Huser, T.D. Brock and K. Wuhrmann (1980) Arch. Microbiol. 124.: 1.PubMedCrossRefGoogle Scholar
  38. 38.
    Enebo, L. (1954) Dissertation, Royal Inst. Technology, Stockholm.Google Scholar
  39. 39.
    Weimar, P.J. and J.G. Zeikus (1977) Appl. Environ. Microbiol. 33.: 289.Google Scholar
  40. 40.
    Sadana, J.C. and V. Jagannathan (1956) Biochim. Biophys. Acta 19.: 440.PubMedCrossRefGoogle Scholar
  41. 41.
    Bell, G.R., J. LeGall and H.D. Peck, Jr. (1974) J. Bacteriol. 120.: 994.PubMedGoogle Scholar
  42. 42.
    Yagi, T., K. Kimura, H. Daidogi, F. Sakai, S. Tumura and H. Inokuchi (1976) J. Biochem. (Tokyo) 79.: 661.Google Scholar
  43. 43.
    Van der Westen, H.M., S.G. Mayhew and C. Veeger (1978) FEBS Lett. 86.: 122.PubMedCrossRefGoogle Scholar
  44. 44.
    Bell, G.R., J.P. Lee, H.D. Peck, Jr. and J. LeGall (1978) Biochemie 60.: 315.CrossRefGoogle Scholar
  45. 45.
    Hatchikian, E.C., M. Chaigneau and J. LeGall (1976) in Microbial Producti on and Utilization of Gases (Ed. H. G. Schlegel, G. Gottschalk and N. Pfennig) E. Goltze KG, Gottingen, p. 109.Google Scholar
  46. 46.
    Tsuji, K. and T. Yagi (1980) Arch. Microbiol. 125.: 35.CrossRefGoogle Scholar
  47. 47.
    Dixon, R.O.D. (1976) Nature 262.: 173.Google Scholar
  48. 48.
    Jones, R.W. and P.B. Garland (1977) Biochem. J. 164.: 199.PubMedGoogle Scholar
  49. 49.
    Coleman, G.S. (1960) J. Gen. Microbiol. 22.: 423.PubMedGoogle Scholar
  50. 50.
    Badziong, W. and R.K. Thauer (1980) Arch. Microbiol 125.: 167.CrossRefGoogle Scholar
  51. 51.
    Peck, H.D. Jr. (1960) J. Biol. Chem. 235.: 2734.PubMedGoogle Scholar
  52. 52.
    Barton, L.L., J. LeGall and H.D. Peck, Jr. (1970) Biochem. Biophys. Res. Commun. 41.: 1036.PubMedCrossRefGoogle Scholar
  53. 53.
    Peck, H.D. Jr. (1966) Biochem. Biophys. Res. Commun. 22.: 112.PubMedCrossRefGoogle Scholar
  54. 54.
    Wood, P.M. (1978) FEBS Lett. 95.: 12.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • H. D. PeckJr.
    • 1
  • M. Odom
    • 1
  1. 1.Department of BiochemistryUniversity of GeorgiaAthensUSA

Personalised recommendations