Metabolic Compromises Involved in the Growth of Microorganisms in Nutrient-Limited (Chemostat) Environments

  • David W. Tempest
  • Oense M. Neijssel
Part of the Basic Life Sciences book series


Biochemical research, particularly over the past 50 years or so, has revealed ever more clearly the underlying unity of living processes. And this possibly has obscured to some extent the fact that there are nevertheless important physiological differences between microbial cells and, say, the cells of higher animals. One of the most fundamental of these, and one which undoubtedly has considerable evolutionary significance, is evident in the ways in which the different cells accommodate to environmental change. Clearly, the cells of higher animals have evolved to spend the whole of their existence in a closely regulated environment, and this is a condition of life for them. But microbial cells are markedly different. They generally are exposed to environments that fluctuate extensively (and often rapidly) and, being free-living creatures, they do not possess the capacity to regulate their surroundings. Instead, they respond to environmental change by changing themselves — structurally and functionally — and seemingly have acquired in the course of evolution a whole armoury of sophisticated control mechanisms whereby to effect such change.


Dilution Rate Gluconic Acid Chemostat Culture Teichoic Acid Glycerol Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, A.J., Green, R.S. and Archibald, A. R. (1978). Wall composition and phage-binding properties of Bacillus subtilis W23 grown in chemostat culture in media containing varied concentrations of phosphate. FEMS Microbiol. Lett., 4, 129–132.CrossRefGoogle Scholar
  2. 2.
    Archibald, A.R. (1976). The use of bacteriophages to detect alterations in the cell surface of Bacillus subtilis. In: Continuous Culture 6 (A.C.R. Dean, D.C. Ellwood, C.G.T. Evans and J. Melling, eds.) pp 262–269. Ellis Horwood Ltd., Chichester.Google Scholar
  3. 3.
    Archibald, A.R. and Coapes, H.E. (1976). Bacteriophage SP50 as a marker for cell wall growth in Bacillus, subtilis. J. Bacteriol. 125, 1195–1206.PubMedGoogle Scholar
  4. 4.
    Baddiley, J. (1972). Teichoic acids in cell walls and membranes of bacteria. Essays in Biochem. 8, 35–77.Google Scholar
  5. 5.
    Brown, CM. (1976). Nitrogen metabolism in bacteria and fungi. In: Continuous Culture 6 (A.C.R. Dean, D.C. Ellwood, C.G.T. Evans and J. Melling, Eds.) pp 170–183. Ellis Horwood Ltd., Chichester.Google Scholar
  6. 6.
    Calcott, P.H. and Postgate, J.R. (1972). On substrate-accelerated death in Klebsiella aevogenes. J. Gen. Microbiol. 70, 115–122.PubMedGoogle Scholar
  7. 7.
    Calcott, P.H. and Postgate, J.R. (1974). The effects of ß-galac-tosidase activity and cyclic AMP on lactose-accelerated death. J. Gen. Microbiol. 85, 85–90.PubMedGoogle Scholar
  8. 8.
    Clarke, P.H. (1974). The evolution of enzymes for the utilisation of novel substrates. Symp. Soc. Gen. Microbiol. 24, 183–217.Google Scholar
  9. 9.
    Dawes, E.A. and Senior, P.J. (1973). The role and regulation of energy reserve polymers in micro-organisms. Adv. Microbial Physiol. 10, 135–266.CrossRefGoogle Scholar
  10. 10.
    Dawes, E.A., Midgley, M. and Whiting, P.H. (1976). Control of transport systems for glucose, gluconate and 2-oxo-gluconate, and of glucose metabolism in Pseudomonas aeruginosa. In: Continuous Culture 6 (A.C.R. Dean, D.C. Ellwood, C.G.T. Evans and J. Melling, eds.) pp 195–207. Ellis Horwood Ltd., Chichester.Google Scholar
  11. 11.
    Dicks, J.W. and Tempest, D.W. (1967). Potassium-ammonium antagonism in polysaccharide synthesis by Aerobacter aevogenes. Biochim. biophys. Acta 136, 176–179.PubMedCrossRefGoogle Scholar
  12. 12.
    Ellwood, D.C. and Tempest, D.W. (1969). Control of teichoic acid and teichuronic acid biosynthesis in chemostat cultures of Bacillus subtilis var niger. Biochem. J. 111, 1–5.PubMedGoogle Scholar
  13. 13.
    Ellwood, D.C. and Tempest, D.W. (1972). Effects of environment on bacterial wall content and compostion. Adv. Microbial Physiol. 7, 83–117.CrossRefGoogle Scholar
  14. 14.
    Evans, C.G.T., Herbert, D. and Tempest, D.W. (1970). The continuous cultivation of micro-organisms 2. Construction of a chemostat. In: Methods in Microbiology (J.R. Norris and D. W. Ribbons, eds.) pp 277–327. Academic Press, London.Google Scholar
  15. 15.
    Faik P. and Kornberg, H.L. (1973). Isolation and properties of E. coli mutants affected in gluconate uptake. FEBS Lett. 32, 260–264.PubMedCrossRefGoogle Scholar
  16. 16.
    Ghuysen, J.M. (1977). Biosynthesis and assembly of bacterial walls. Cell Surface Reviews, 4, 463–569.Google Scholar
  17. 17.
    Harder, W. and Veldkamp, H. (1971). Competition of marine psychrophilic bacteria at low temperatures. Antonie van Leeuwen-hoek, 37, 51–63.CrossRefGoogle Scholar
  18. 18.
    Hartley, B.S., Burleigh, B.D., Midwinter, G.G. Moore, C.H. Morris, H.R.,Rigby, P.J.W., Smith, M.J. and Taylor, S.S. (1972) Where do new enzymes come from? In: Enzymes: Structure and Function, 8th FEBS Meeting, vol 29 (J. Drenth, R.A. Oosterbaan and C. Veeger, eds.) pp 151–176. North-Holland, Amsterdam.Google Scholar
  19. 19.
    Hayashi, S. and Lin, E.C.C. (1965). Capture of glycerol by cells of Escherichia coli. Biochim. biophys. Acta 94, 479–487.PubMedCrossRefGoogle Scholar
  20. 20.
    Herbert, D. (1961). The chemical composition of micro-organisms as a function of their environment. Symp. Soc. gen. Microbiol. 11, 391–416.Google Scholar
  21. 21.
    Hueting, S., de Lange, T. and Tempest, D.W. (1978). Properties and regulation of synthesis of the glycerol dehydrogenase present in Klebsiella aerogenes NCTC 418 growing in chemostat culture. FEMS Microbiol. Lett 4, 185–189.CrossRefGoogle Scholar
  22. 22.
    Hueting, S., de Lange, T. and Tempest, D.W. (1979). Energy requirement for maintenance of the transmembrane potassium gradient in Klebsiella aerogenes NCTC 418: A continuous culture study. Arch. Microbiol. 123, 183–188.PubMedCrossRefGoogle Scholar
  23. 23.
    Jones, C. W. (1977). Aerobic respiratory systems in bacteria. Symp. Soc. gen. Microbiol. 27, 23–59.Google Scholar
  24. 24.
    Kavanaugh, B.M. and Cole, J.A. (1976). The regulation of nitrogen metabolism in Escherichia coli. In: Continuous Culture 6 (A.C.R. Dean, D.C. Ellwood, C.G.T. Evans and J. Melling, eds.) pp 184–194. Ellis Horwood Ltd., Chichester.Google Scholar
  25. 25.
    Kjeldgaard, N.O. and Kurland, CG. (1963). The distribution of soluble and ribosomal RNA as a function of the growth rate J. molec. Biol. 6, 341–351.CrossRefGoogle Scholar
  26. 26.
    Koch, A.L. (1971). The adaptive responses of Escherichia coli to a feast and famine existence. Adv. Microbial Physiol. 6, 147–217.CrossRefGoogle Scholar
  27. 27.
    Kornberg, H.L. (1973). Fine control of sugar uptake by Escherichia coli. In: Rate Control of Biological Processes. 17th Symp. Soc. exptl. Biol. (D.D. Davies, ed.) pp 175–193. University Press, Cambridge.Google Scholar
  28. 28.
    Kornberg, H.L. (1976). Genetics in the study of carbohydrate transport by bacteria. J. gen. Microbiol. 96, 1–16.PubMedGoogle Scholar
  29. 29.
    Kubitschek, H..E. (1974). Operation of selection pressure on microbial populations. Symp. Soc. gen. Microbiol. 24, 105–130.Google Scholar
  30. 30.
    Kundig, W. (1974). Molecular interactions in the bacterial phosphoenolpyruvate phosphotransferase system (PTS). J. Supramol. Structure. 2, 695–714.CrossRefGoogle Scholar
  31. 31.
    Kundig, W., Ghosh, S. and Roseman, S. (1964). Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system. Proc. Nat. Acad. Sci. U.S.A., 52, 1967–2074.CrossRefGoogle Scholar
  32. 32.
    Lin, E.C.C., Levin, A.P. and Magasanik, B. (1960). The effect of aerobic metabolism on the inducible glycerol dehydrogenase of Aevobaotev aevogenes. J. biol. Chem. 235, 1824–1829.PubMedGoogle Scholar
  33. 33.
    Neijssel, O.M. (1976). The significance of overflow metabolism in the physiology and growth of Klebsiella aerogenes. Thesis: University of Amsterdam.Google Scholar
  34. 34.
    Neijssel, O.M. (1977). The effect of 2,4-dinitrophenol on the growth of Klebsiella aevogenes NCTC 418 in aerobic chemo-stat cultures. FEMS Microbiol. Lett. 1, 47–50.CrossRefGoogle Scholar
  35. 35.
    Neijssel, O.M. and Tempest, D.W. (1975). The regulation of carbohydrate metabolism in Klebsiella aevogenes NCTC 418 organisms, growing in chemostat culture. Arch. Microbiol. 106, 251–258.PubMedCrossRefGoogle Scholar
  36. 36.
    Neijssel, O.M., Hueting, S., Crabbendam, K.J. and Tempest, D.W. (1975). Dual pathways of glycerol assimilation in Klebsiella aevogenes NCIB 418. Their role and possible functional significance. Arch. Microbiol. 104, 83–87.PubMedCrossRefGoogle Scholar
  37. 37.
    Nelson, D.L. and Kennedy, E.P. (1972). Transport of magnesium by a repressible and a nonrepressible system in Esoheviohia ooli. Proc. Nat. Acad. Sci. U.S.A. 69, 1091–1093.CrossRefGoogle Scholar
  38. 38.
    Osborn, M.J., Rick, P.D., Lehmann, V., Rupprecht, E. and Singh, M. (1974). Structure and biogenesis of the cell envelope of Gram-negative bacteria. Ann. N.Y. Acad. Sci. 235, 52–65.PubMedCrossRefGoogle Scholar
  39. 39.
    Pollock, M.R. (1961). The measurements of the liberation of penicillinase from Bacillus subtilis. J. gen. Microbiol. 26, 239–253.PubMedGoogle Scholar
  40. 40.
    Postgate, J.R. and Hunter, J.R. (1964). Accelerated death of Aevobaotev aevogenes starved in the presence of growth-limiting substrates. J. gen. Microbiol. 34, 459–473.PubMedGoogle Scholar
  41. 41.
    Rhoads, D.B. and Epstein, W. (1977). Energy coupling to net K+ transport in Esoheviohia ooli. J. Biol. Chem. 252, 1394–1401.PubMedGoogle Scholar
  42. 42.
    Rogers, H.J. and Perkins, H.R. (1968). Cell Walls and Membranes. E. F. and N. Spon Ltd., London.Google Scholar
  43. 43.
    Stouthamer, A.H. (1977). Energetic aspects of the growth of micro-organisms. Symp. Soc. gen. Microbiol. 27, 285–315.Google Scholar
  44. 44.
    Sturman, A.J. and Archibald, A.R. (1978). Conservation of phage receptor material at the polar caps of Bacillus subtilis W23. FEMS Microbiol. Lett. 4, 255–259.CrossRefGoogle Scholar
  45. 45.
    Tempest, D.W. (1978). The biochemical significance of microbial growth yields: A reassessment. Trends in Biochem. Sci. 2, 180–184.CrossRefGoogle Scholar
  46. 46.
    Tempest, D.W. and Hunter, J.R. (1965). The influence of temperature and pH value on the macromolecular composition of magnesium-limited and glycerol-limited Aerobacter aerogenes growing in a chemostat. J. gen. Microbil. 41, 267–273.Google Scholar
  47. 47.
    Tempest, D.W. and Neijssel, O.M. (1978). Eco-physiological aspects of microbial growth in aerobic nutrient-limited environments. Adv. Microbial Ecol. 2, 105–153.CrossRefGoogle Scholar
  48. 48.
    Tempest, D.W., Dicks, J.W. and Meers, J.L. (1967). Magnesium-limited growth of Bacillus subtilis, in pure and mixed cultures in a chemostat. J. gen. Microbiol. 43, 139–147.Google Scholar
  49. 49.
    Tempest, D.W., Hicks J.W. and Ellwood, D.C. (1968). Influence of growth condition on the concentration of potassium in Bacillus subtitis var. niger and its possible relationship to cellular ribonucleic acid, teichoic acid and teichuronic acid. Biochem. J. 106, 237–243.PubMedGoogle Scholar
  50. 50.
    Tempest, D.W., Meers, J.L. and Brown, C.M. (1970). Synthesis of glutamate in Aerobaoter aerogenes by a hitherto unknown route. Biochem. J. 117, 405–407.PubMedGoogle Scholar
  51. 51.
    Veldkamp, H. and Jannasch, H.W. (1972). Mixed culture studies with the chemostat. J. appl. Chem. Biotechnol. 22, 105–123.CrossRefGoogle Scholar
  52. 52.
    Willsky, G.R. and Malamy, M.H. (1974). The loss of phoS periplasmic protein leads to a change in the specificity of a constitutive inorganic phosphate transport system in Escherichia coli. Biochem. Biophys. Res. Commun. 60, 226–233.CrossRefGoogle Scholar
  53. 53.
    Willsky, G.R. and Malamy, M.H. (1976). “Control of” the synthesis of alkaline phosphatase and the phosphate binding protein in Escherichia coli. J. Bacteriol. 127, 595–609.PubMedGoogle Scholar
  54. 54.
    Wouters, J.T.M. and Buysman, P.J. (1977). Production of some exocellular enzymes by Bacillus licheniformis 749/C in chemostat cultures. FEMS Microbiol. Lett. 1, 109–112.CrossRefGoogle Scholar
  55. 55.
    Zwaig, N., Kistler, W.S. and Lin, E.C.C. (1970). Glycerol-kinase, the pacemaker for the dissimilation of glycerol in Escherichia coli. J. Bacteriol. 102, 753–759.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • David W. Tempest
    • 1
  • Oense M. Neijssel
    • 1
  1. 1.Laboratorium voor MicrobiologieUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations