cAMP and Regulation of Carbohydrate Metabolism

  • James L. Botsford
Part of the Basic Life Sciences book series


Cyclic nucleotides including cAMP and cGMP are found in many procaryotes. Table I provides a representative selection of bacteria from which cAMP has been identified and quantitated. With only a few exceptions, the mechanism of action of these nucleotides and the physiological consequences of variations in the intracellular levels are not known, cGMP has also been found in a variety of bacteria (Table II), it is usually present in amounts at least an order of magnitude smaller than those observed for cAMP. Intracellular concentrations of cGMP of 3–35 nM have been reported for Escherichia coli (3). 30 nM cGMP is equivalent to 18 molecules per cell if the volume of a cell is assumed to be 10-15 1. It has been proposed that cGMP in E. coli is an artifact of adenylate cyclase activity (70). However, a guanylate cyclase activity distinct from adenylate cyclase by several criteria has been purified and partially characterized from E. coli (40). In animal cells, it was originally proposed that cAMP and cGMP act in opposition, the “Yin Yang Effect.” This hypothesis has received less support as more evidence has accumulated (59).


Carbon Source Adenylate Cyclase Dilution Rate Adenylate Cyclase Activity Catabolite Repression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alper, M.D. and B.N. Ames. 1978. Transport of antibiotics and metabolic analogs by systems under cyclic AMP control: Positive selection of Salmonella typhimurium ays and crp mutants. J. Bacteriol. 133:149–157.PubMedGoogle Scholar
  2. 2.
    Anderson, W.B., A.B. Schneider, M. Emmer, R.L. Perlman, and I. Pastan. 1971. Purification and properties of the cyclic adenosine 3’, 5’-monophosphate receptor proetin which mediates cyclic adenosine 3′,5′-monophosphate dependent gene transcription in Escherichia coli. J. Biol. Chm. 245:5929–5937.Google Scholar
  3. 3.
    Bernlohr, R.W., M.K. Haddox, and N.D. Goldberg. 1974. Cyclic 3′,5′-monophosphate in Escherichia coli and Bacillus liceni-formis. J. Biol. Chm. 249:4329–4331.Google Scholar
  4. 4.
    Botsford, J.L. and M. Drexler. 1978. The cyclic 3′,5′-adenosine monophosphate receptor protein and regulation of cyclic 3′,5′-adenosine monophosphate synthesis in Escherichia coli. Molec. Gen. Genet. 164:47–56.CrossRefGoogle Scholar
  5. 5.
    Buettner, M.J., E. Spitz, and H.V. Rickenberg. 1973. Cyclic adenosine monophosphate in Escherichia coli. J. Bacteriol. 114:1068–1075.PubMedGoogle Scholar
  6. 6.
    Clarke, L. and J. Carbon. 1976. A colony bank containing synthetic ColEl hybrid plasmids representative of the entire E. coli genome. Cell 9:91–99.PubMedCrossRefGoogle Scholar
  7. 7.
    Danley, D.E., M. Drexler, and J.L. Botsford. 1977. Differential binding of cyclic adenosine 3′,5′-monophosphate to the cyclic adenosine 3′,5′-monophosphate receptor protein inGoogle Scholar
  8. 8.
    Dean, A.C.R. 1972. Influence of environment on the control of enzyme synthesis. J. Appl. Chem. and Biotech. 22:245–257.CrossRefGoogle Scholar
  9. 9.
    deCrombrugghe, B. and I. Pastan. 1978. Cyclic AMP, the cyclic AMP receptor protein and their dual control of the galactose operon. In: The Operon. Editors: J.H. Miller and W.S. Reznikoff. Cold Spring Harbor, New York. Cold Spring Harbor Laboratory, pp. 303–324.Google Scholar
  10. 10.
    Dessein, A., M. Schwartz, and A. Ullmann. 1978. Catabolite repression in Escherichia coli mutants lacking cyclic AMP. Molec. Gen. Genet. 162:83–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Dessein, A., G. Tillier, and A. Ullmann. 1978. Catabolite modulator factor: physiological properties and in vivo effects. Molec. Gen. Genet. 162:89–94.PubMedCrossRefGoogle Scholar
  12. 12.
    Dills, S.S., A. Apperson, M.R. Schmidt and M.H. Saier, Jr. 1980. Carbohydrate transport in bacteria. Microbiol. Rev. 44:385–418.PubMedGoogle Scholar
  13. 13.
    Epstein, W., L.B. Rothman-Denes, and J. Hesse. 1975. cAMP as mediator of catabolite repression in Escherichia coli. Proc. Nat. Acad. Sci. USA 72:2300–2303.PubMedCrossRefGoogle Scholar
  14. 14.
    Feucht, B.U. and M.H. Saier. 1980. Fine control of adenylate cyclase by the phosphoenolpyruvate:sugar phosphotransferase systems in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 141:603–610.PubMedGoogle Scholar
  15. 15.
    Gersch, D., W. Romer, H. Bocker and H. Thrum. 1978. Variation in cAMP and cGMP in antibiotic producing strains of Strepto-myces hydroscopius. FEMS Microbiol. Lett. 3:39–46.Google Scholar
  16. 16.
    Goldenbaum, P.E. and G.A. Hall. 1979. Transport of cyclic adenosine 3′,5′-monophosphate across Escherichia coli membrame vessicles. J. Bacteriol. 140:459.PubMedGoogle Scholar
  17. 17.
    Gonzales, J.E. and A. Peterkofsky. 1975. Diverse directional changes of cAMP relative to cGMP in E. coli. Biochem. Biophys. Res. Comm. 67:190–198.CrossRefGoogle Scholar
  18. 18.
    Haggerty, D.M., and R.F. Schleif. 1975. Kinetics of the onset of catabolite repression in Escherichia coli as determined by lac mRNA initiations and intracellular cAMP levels. J. Bacteriol. 123:946–953.PubMedGoogle Scholar
  19. 19.
    Harman, J.G. and J.L. Botsford. 1979. Synthesis of adenosine 3′,5′-cyclic monophosphate in Salmonella typhimurium growing in continuous culture. J. Gen. Microbiol. 110:243–246.PubMedGoogle Scholar
  20. 20.
    Harvey, R.J. 1970. Metabolic regulation in glucose limited chemostat cultures of Escherichia coli. J. Bacteriol. 104: 698–706.PubMedGoogle Scholar
  21. 21.
    Harwood, J. and A. Peterkofsky. 1975. Glucose sensitive adenylate cyclase in toluene treated cells of Escherichia coli. J. Biol. Chem. 250:4656–4662.PubMedGoogle Scholar
  22. 22.
    Hassan, H.M. and I. Fridovitch. 1977. Physiological function of superoxide dismutase in glucose limited chemostat cultures of Escherichia coli. J. Bacteriol. 130:805–811.PubMedGoogle Scholar
  23. 23.
    Herbert, D. and H.L. Romberg. 1976. Glucose as the rate-limiting step in the growth of E. coli on glucose. Biochem. J. 156:449–456.Google Scholar
  24. 24.
    Hewlett, E. and J. Wolff. 1976. Soluble adenylate cyclase from the culture medium of Bordetella pertusis. Purification and properties. J. Bacteriol. 127:890–898.PubMedGoogle Scholar
  25. 25.
    Hood, E.E., S. Armour, J.D. Ownby, A.K. Hauda and R.A. Bressan. 1979. Effect of nitrogen starvation on the level of cAMP in Andbaena variabilis. Biochim. Biophys. ACTA 588:193–199.PubMedCrossRefGoogle Scholar
  26. 26.
    Hylemon, P.B. and P.V. Phibbs, Jr. 1974. Evidence against the presence of cyclic AMP,and related enzymes in selected strains of Bacteroides fragilis. Biochem, Biophys. Res. Comm. 60:88–95.CrossRefGoogle Scholar
  27. 27.
    Ishiyama, J. 1976. Isolation of cyclic deoxyadenosine 3′,5′-monophosphate from the culture fluid of Corynebacterium muriseipticum. J. Biol. Chem. 251:438–440.PubMedGoogle Scholar
  28. 28.
    Ishiyama, J. 1976. Isolation of inosine 3T,5’-monophosphate from bacterial culture medium. J. Cycl. Nucleo. Res. 2:21–23.Google Scholar
  29. 29.
    Ishiyama, J. 1975. Isolation of cyclic 3′,5′-guanosine monophosphate from bacterial culture fluids. Amino Acid and Nucleic Acid 32:87–88.Google Scholar
  30. 30.
    Ishiyama, J. 1975. Isolation of 3′,5′-pyrimidine mononucleotides from bacterial culture fluids. Biochem. Biophys. Res. Comm. 65:286–288.PubMedCrossRefGoogle Scholar
  31. 31.
    Janecek, J., J. Naprtek, Z. Dobrova, M. Jiresova, and J. Spizek. 1979. Adenylate cyclase activity in Escherichia coli cultured under various conditions. FEMS Microbiol. Lett. 6:305–310.CrossRefGoogle Scholar
  32. 32.
    Katz, L. and D.R. Helinski. 1974. Effects of inhibitors of RNA and protein synthesis on cAMP stimulation of plasmid ColEl replication. J. Bacteriol. 119:450–460.PubMedGoogle Scholar
  33. 33.
    Kubitschek, H.E. 1970. Introduction to research with continuous culture. Englewood Cliffs, NJ. Prentice-Hall pp260.Google Scholar
  34. 34.
    Lee, C.H. 1977. Identification of adenosine 3′,5′-monophosphate in Mycobacterium smegmatis. J. Bacteriol. 132:1031–1033.PubMedGoogle Scholar
  35. 35.
    Lee, N. 1978. Molecular aspects of ara regulation. In: The Operon. Editors: J. H. Miller and W.S. Reznikoff. Cold Spring Harbor, NY. Cold Spring Harbor Laboratories, pp 389–409.Google Scholar
  36. 36.
    Lim, S.T. and K.T. Shanmugam. 1979. Effect of cyclic guano-sine 3′,5′-monophosphate on nitrogen fixation in Rhizobium japonicum. J. Bacteriol. 139:256–263.PubMedGoogle Scholar
  37. 37.
    Lim, S.T. and K.T. Shanmugam. 1979. Regulation of hydrogen utilization in Rhizobium japonicum by cyclic AMP. Biochim. Biophys. ACTA 584:479–491.PubMedCrossRefGoogle Scholar
  38. 38.
    McFall, E. and J. Mandelstam. 1963. Specific metabolic expression of three induced enzymes in Escherichia coti. Biochem. J. 89:391–399.PubMedGoogle Scholar
  39. 39.
    McGinnis, J.F. and K. Paigen. 1973. Site of catabolite inhibition of carbohydrate metabolism. J. Bacteriol. 114:885–887.PubMedGoogle Scholar
  40. 40.
    Macchia, V., S. Varrone, H. Weissbach, D.L. Miller and I. Pastan. 1975. Guanylate cyclase in Escherichia coli. J. Biol. Chem. 250:6214–6220.PubMedGoogle Scholar
  41. 41.
    Magasanik, B. 1970. Glucose Effects: Inducer exclusion and repression. In: The Lactose Operon. Editors: J. Beckwith and D. Zipser. Cold Spring Harbor, NY. Cold Spring Harbor Laboratory, pp 189–220.Google Scholar
  42. 42.
    Majerfeld, I.H., D. Miller, E. Spitz and H.V. Rickenberg. 198. Regulation of the synthesis of adenylate cyclase by the cAMP-cAMP receptor protein complex. Molec. Gen. Genet. In press.Google Scholar
  43. 43.
    Makman, R.S. and E.W. Sutherland. 1965. Adenosine 3′,5′-phosphate in Escherichia coli. J. Biol. Chem. 240:1309–1314.PubMedGoogle Scholar
  44. 44.
    Nielsen, L.D., D. Monard, and H.V. Rickenberg. 1973. Cyclic 3′,5′-adenosine monophosphate phosphodiesterase of Escherichia coli. J. Bacteriol. 116:857–866.PubMedGoogle Scholar
  45. 45.
    Parish, J.H., K.R. Wedgwood, and D.G. Herries. 1976. Morphogenesis in Myxococcus xanthus and Myxococcus virescens.(Myxo-bacteriales). Arch. Microbiol. 107:343–351.PubMedCrossRefGoogle Scholar
  46. 46.
    Pastan, I. and S. Adhya. 1976. Cyclic adenosine 3′,5′-monophosphate in Escherichia coli. Bacteriol. Rev. 40:527–551.PubMedGoogle Scholar
  47. 47.
    Pastan, I. and R.L. Perlman. 1970. Cyclic adenosine monophosphate in bacteria. Science 169:339–344.PubMedCrossRefGoogle Scholar
  48. 48.
    Peterkofsky, A. 1981. Transmembrane signaling by sugars regulates the activity of Escherichia coli adenylate cyclase. In: Microbiology 1981. Editor: D. Schlessinger. Washington D.C. American Society for Microbiology. In Press.Google Scholar
  49. 48a.
    Peterkofsky, A. 1976. Cyclic nucleotides in bacteria. Adv. Cyc. Nucleo. Res. 7:1–45.Google Scholar
  50. 49.
    Peterkofsky, A. and C. Gazdar. 1979. Escherichia coli adenylate cyclase complex-Regulation by the proton electrochemical gradient. Proc. Nat. Acad. Sci. USA 76:1099–1102.PubMedCrossRefGoogle Scholar
  51. 50.
    Peterkofsky, A. and C. Gazdar. 1973. Measurements of cAMP synthesis in intact E. coli B. Proc. Nat. Acad. Sci. USA 70:2149–2152.PubMedCrossRefGoogle Scholar
  52. 51.
    Peterkofsky, A. and C. Gazdar. 1971. Glucose and the metabolism of adenosine 3′,5′-cyclic monophosphate in Escherichia coli. Proc. Nat. Acad. Sci. USA 68:2794–2798.PubMedCrossRefGoogle Scholar
  53. 52.
    Peterkofsky, A., J.E. Gonzalez, and C. Gazdar. 1978. The Escherichia coli adenylate cyclase complex. Regulation by enzyme I of the phosphoenol pyruvate:sugar phosphotransferase system. Arch. Biochem. Biophys. 188:47–55.PubMedCrossRefGoogle Scholar
  54. 53.
    Peterkofsky, A., J. Harwood, and C. Gazdar. 1975. Inducibility of sugar sensitivity of adenylate cyclase of E. coli. B. Jour. Cyc. Nucleo. Res. 1:11–20.Google Scholar
  55. 54.
    Postma, P.W. and S. Roseman. 1976. The bacterial phosphoenol pyruvate:sugar phosphotransferase system. Biochim. Biophys. ACTA 457:213–257.Google Scholar
  56. 55.
    Rephaeli, A.W. and M.H. Saier, Jr. 1976. Effects of cry. mutations on adenosine 3′,5′-monophosphate metabolism in Salmonella typhimurium. J. Bacteriol 127:120–127.PubMedGoogle Scholar
  57. 56.
    Rickenberg, H.V. 1974. Cyclic AMP in Procaryotes. Ann. Rev. Microbiol. 28:357–394.Google Scholar
  58. 57.
    Rose, J.K. and C.Y. Yanofsky. 1972. Metabolic regulation of the tryptophan Operon of E. coli. Repressor independent regulation of transcription initiation frequency. Jour. Molec. Biol. 69:103–110.CrossRefGoogle Scholar
  59. 58.
    Roseman, S. 1977. Transport of sugars across bacterial membranes. In: Biochemistry of Membrane Transport. Editors: G. Semenza and E. Carafoli. Berlin. Springer-Verlag, pp. 582–597.CrossRefGoogle Scholar
  60. 59.
    Ross, E.M. and A.G. Oilman. 1980. Biochemical properties of hormone sensitive adenylate cyclase. Ann. Rev. Biochem. 49:533–564.PubMedCrossRefGoogle Scholar
  61. 60.
    Sahyoun, N. and I.F. Durr. 1972. Evidence against the presence of 3′,5′-cyclic adenosine monophosphate and relevant enzymes in Lactobacillusplantarum. J. Bacteriol. 112:421–426.PubMedGoogle Scholar
  62. 61.
    Saier, M.H. 1979. The role of the cell surface in regulating the internal environment. In: The Bacteria. Vol. VII. Editors: J.R. Sobatch and L.N. Orston. New York: Academic Press ppl68–267.Google Scholar
  63. 62.
    Saier, M.H. 1977. Bacterial phosphoenolpyruvate:sugar phosphotransferase systems: Structural, functional and evolutionary interrelationships. Bacteriol. Rev. 41:856–871.PubMedGoogle Scholar
  64. 63.
    Saier, M.H., B.U. Feucht, and M.F. McCamman. 1975. Regulation of intracellular cyclic AMP levels in Escherichia coli and Salmonella typhimurium. Evidence for energy dependent excretion of the cyclic nucleotide. Jour. Biol. Chem. 250:7593.Google Scholar
  65. 64.
    Saier, M.H. and E.G. Moczydlowski. 1978. The regulation of carbohydrate transport in Escherichia coli and Salmonella typhimurium. In: Bacterial Transport. Editors: Barry P. Rosen. New York: Marcel Dekker, Inc. ppl03–122.Google Scholar
  66. 65.
    Sarkar, N. and H. Palus. 1975. A guanosine 3f,5’-monophosphate sensitive nuclease from Bacillus brevis. J. Biol. Chem. 250:684–690.PubMedGoogle Scholar
  67. 66.
    Schölte, B.J. and P.W. Postma. 1980. Mutation in the cyp gene of Salmonella typhimurium which interferes with inducer exclusion. J. Bacteriol. 141:751–757.PubMedGoogle Scholar
  68. 67.
    Setlow, P. 1973. Inability to detect cAMP in vegetative or sporulating cells or dormant spores of B. megaterium. Biochem. Biophys. Res. Comm. 52:365–372.PubMedCrossRefGoogle Scholar
  69. 68.
    Setlow, B. and P. Setlow. 1978. Levels of cGMP in dormant, germinating and outgrowing spores and growing a sporulating cells of Bacillus megaterium. J. Bacteriol. 136:433–436.PubMedGoogle Scholar
  70. 69.
    Shapiro, L. 1976. Differentiation in the Caulobacter cell cycle. Ann. Rev. Microbiol. 30:377–407.CrossRefGoogle Scholar
  71. 70.
    Shibuya, M., Y. Takabe, and Y. Kaziro. 1977. A possible involvement of cya gene in the synthesis of cyclic guanosine 3’:5’-monophosphate in E. coli. Cell 12:521–528.PubMedCrossRefGoogle Scholar
  72. 71.
    Siegel, L.S., P.B. Hylemon, and P.V. Phibbs, Jr. 1977. Cyclic adenosine 3T,5’-monophosphate and activities of adenylate cyclase and cyclic adenosine 3′,5′-monophosphate phosphodiesterase in Pseudomonas aeruginosa and Bacteriodies. J. Bacteriol. 129:87–96.PubMedGoogle Scholar
  73. 72.
    Takebe, Y., M. Shibuya, and Y. Kaziro. 1978. A new extra-genic suppressor of cya mutations. J. Biochem. 83:1615–1623.PubMedGoogle Scholar
  74. 73.
    Tempest, D.W. 1970. The place of continuous culture in microbiological research. Adv. Microb. Phys. 4:223–249.CrossRefGoogle Scholar
  75. 74.
    Ullmann, A. 1974. Are cyclic AMP effects related to real physiological phenomena? Biochem. Biophys. Res. Comm. 57:348–355.PubMedCrossRefGoogle Scholar
  76. 75.
    Ullmann, A., F. Tillier, and J. Monod. 1976. Catabolite modulator factor: A possible mediator of catabolite repression in bacteria. Proc. Nat. Acad. Sci. USA 73:3476–3479.PubMedCrossRefGoogle Scholar
  77. 76.
    Villarejo, M., J. Stanovich, K. Young, and G. Edlin. 1979. Differences in membrane proteins, cAMP levels and glucose transport between batch and chemostat cultures of Escherichia coli. Curr. Microbiol. 1:345–349.Google Scholar
  78. 77.
    Wanner, B.L., R, Kodaira, and F.C. Neidhardt. 1978. Regulation of lac operon expression: Reappraisal of the theory of catabolite repression. J. Bacteriol. 136:947–954.PubMedGoogle Scholar
  79. 78.
    Wright, L.F., D.P. Milne, and C. J. Knowles. 1979. The regulatory effects of growth rate and cyclic AMP levels on carbon catabolism and respiration in E. coli K-12. Biochim. Biophys. ACTA 483:73–80.CrossRefGoogle Scholar
  80. 79.
    Yang, J.K., R.W. Bloom, and W. Epstein. 1979. Catabolite and transient repression in Escherichia coli do not require enzyme I of the phosphotransferase system. J. Bacteriol. 138:275–279.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • James L. Botsford
    • 1
  1. 1.Department of BiologyNew Mexico State UniversityLas CrucesUSA

Personalised recommendations