Hydrogenase Genes

  • R. C. Tait
  • K. Andersen
  • G. Cangelosi
  • K. T. Shanmugam
Part of the Basic Life Sciences book series


Molecular hydrogen (H2) plays a key role in the metabolism of many microorganisms. H2 can function as an electron donor or can be the product of reduction of protons during energy-yielding processes. The function of the protein hydrogenase plays a fundamental role in H2 metabolism. Hydrogenase has been found in a large number of bacteria and algae. A number of reviews concerning the occurrence of hydrogenase in microorganisms and its role in metabolism are available (1–4). For the purpose of this discussion, we shall consider three basic categories of organisms containing hydrogenase. Organisms possessing the ability to oxidize H2 can be regarded as hydrogen uptake positive (hup+), while those able to evolve H2 can be divided into two groups. In the first group, H2 production is the result of anaerobic fermentation reactions, while in the second group H2 production is a result of the processes involved in biological nitrogen fixation. Depending on the nature of the hydrogenase present, an organism may belong to more than one of these three groups. Certain strains of the nitrogen-fixing bacterium Rhizobium japonicum, for example, are able to utilize H2 as an energy source but also evolve H2 as an aspect of nitrogen fixation (5–9). The function of hydrogenase in each of these three groups is outlined below.


Methylene Blue Organic Carbon Source Hydrogenase Activity cAMP Receptor Protein Autotrophic Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gray, C.T., and Gest, H, 1965. Biological formation of molecular hydrogen. Science 148, 186–192.PubMedCrossRefGoogle Scholar
  2. 2.
    Mortenson, L.E. and Chen, J. 1974. Hydrogenase. In: Microbial Iron Metabolism (J.B. Neilands, ed.). New York, Academic Press, pp. 231–282.Google Scholar
  3. 3.
    Peck, H.D. 1968. Energy-coupling mechanisms in chemolitho-trophic bacteria. Ann. Rev. Microbiol. 22, 489–518.CrossRefGoogle Scholar
  4. 4.
    Schlegel, H.G. and Schneider, K. 1978. Distribution and physiological role of hydrogenases in microorganisms. In: Hydrogenases: Their Catalytic Activity, Structure, and Function (H.G. Schlegel and K. Schneider, eds.). Gottingen, Erich Goltze KG, pp. 15–44.Google Scholar
  5. 5.
    Schubert, K.R. and Evans, H.J. 1976. Hydrogen evolution: a major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proc. Natl. Acad. Sci. USA 73, 1207–1211.PubMedCrossRefGoogle Scholar
  6. 6.
    Evans, H.J., Ruiz-Argueso, T., Jennings, N., and Hanus, J. 1977. Energy coupling efficiency of symbiotic nitrogen fixation. In: Genetic Engineering for Nitrogen Fixation (A. Hollaender, ed.), New York, Plenum Publishing Corp., pp. 333–354.Google Scholar
  7. 7.
    Maier, R.J., Campbell, N.E.R., Hanus, F.J., Simpson, F.B., Russell, S.A., and Evans, H.J. 1978. Expression of hydrogenase activity in free-living Rhizobivm japonioum. Proc. Natl. Acad. Sci. USA 75, 3258–3262.PubMedCrossRefGoogle Scholar
  8. 8.
    Carter, K.R., Jennings, N.T., Hanus, F.J., and Evans, H.J. 1978. Hydrogen evolution and uptake by nodules of soybeans inoculated with different strains of Rhizobium japonicum. Can. J. Microbiol. 24, 307–311.PubMedCrossRefGoogle Scholar
  9. 9.
    Hanus, F.J., Maier, R.J. and Evans, H.J. 1979. Autotrophic growth of H2-uptake-positive strains of Rhizobium japonicum in an atmosphere supplied with H2 gas. Proc. Natl. Acad. Sci. USA 76, 1788–1792.PubMedCrossRefGoogle Scholar
  10. 10.
    Schlegel, H.G. and Eberhardt, U. 1972. Regulatory phenomena in the metabolism of Knallgasbacteria. Adv. Microbial. Physio. 7, 205–242.CrossRefGoogle Scholar
  11. 11.
    Schegel, H.G. 1976. Regulatory phenomenon in the metabolism of Knallgasbacteria. Antonie van Leeuwenhoek 42, 181–201.CrossRefGoogle Scholar
  12. 12.
    McFadden, B.A. 1978. Assimilation of one-carbon compounds. In: The Bacteria, Vol. 6 (L.N. Orston and J.R. Sokatch, eds.), New York, Academic Press, pp. 219–304.Google Scholar
  13. 13.
    Stadtman, T. C. 1967. Methane formation. Ann. Rev. Microbiol. 21, 121–142.CrossRefGoogle Scholar
  14. 14.
    Thayer, R.K., Jungermann, K. and Decker, K. 1977. Energy conservation in anaerobic bacteria. Bacteriol. Rev. 41, 100–180.Google Scholar
  15. 15.
    Gaffron, H. 1940. Carbon dioxide reduction with molecular hydrogen in green algae. Amer. J. Bot. 27, 273–283.CrossRefGoogle Scholar
  16. 16.
    Gest, H. and Kamen, M.D., 1949. Studies on the metabolism of photosynthetic bacteria. J. Bacteriol. 58, 239–245.Google Scholar
  17. 17.
    Gest, H. and Kamen, M.D. 1949. Photoproduction of molecular hydrogen by Rhodospirillum rubrum. Science 108, 558–559.CrossRefGoogle Scholar
  18. 18.
    Ormerod, J.G., Ormerod, K.S. and Gest H. 1961. Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch. Biochem. Biophys. 94, 449–463.PubMedCrossRefGoogle Scholar
  19. 19.
    Gest, H., Ormerod, J.G. and Ormerod, K.S. 1962. Photometabolism of Rhodospirillum rubrum: light-dependent dissimilation of organic compounds to carbon dioxide and molecular hydrogen by an anaerobic citric acid cycle. Arch. Biochem. Biophys. 97, 21–33.PubMedCrossRefGoogle Scholar
  20. 20.
    Burns, R.C. and Hardy, R.W.F. 1975. In: Nitrogen Fixation in Bacteria and Higher Plants. New York, Springer Verlag, pp. 65–73.CrossRefGoogle Scholar
  21. 21.
    Zumft, W.G., and Mortenson, L.E. 1975. The nitrogen-fixing complex of bacteria. Biochim. Biophys. Acta 416, 1–52.PubMedGoogle Scholar
  22. 22.
    Shanmugam, K.T., O’Gara, F., Andersen, K., and Valentine, R.C., 1978. Biological nitrogen fixation. Ann. Rev. Plant Physiol. 29, 263–276.CrossRefGoogle Scholar
  23. 23.
    Nakos, G. and Mortenson, L. 1971. Purification and properties of hydrogenase, an iron sulfur protein, from Clostridium pasteurianum W5. Biochim. Biophys. Acta 227, 576–583.PubMedGoogle Scholar
  24. 24.
    Chen, J.S. and Mortenson, L.E. 1974. Purification and properties of hydrogenase from Clostridium pasteurianum W5. Biochim. Biophys. Acta 371, 283–298.PubMedGoogle Scholar
  25. 25.
    LeGall, J., Dervartanian, D.V., Spilker, E., Lee, J.P., and Peck, H.D. 1971. Evidence for the involvement of non-heme iron in the active site of hydrogenase from Desulfovibrio vulgaris. Biochim. Biophys. Acta 234, 525–530.CrossRefGoogle Scholar
  26. 26.
    van der Westen, H.M., Mayhew, S.G., and Veeger, C. 1978. Separation of hydrogenase from intact cells of Desulfovibiro vulgaris. FEBS Letters 86, 122–126.PubMedCrossRefGoogle Scholar
  27. 27.
    Schink, B. and Schlegel, H.G. 1979. The membrane-bound hydrogenase of Aloaligenes eutrophus. I. Solubilization, purification, and biochemical properties. Biochim. Biophys. Acta 567, 315–324.PubMedGoogle Scholar
  28. 28.
    Schneider, K. and Schlegel, H.G. 1976. Purification and properties of soluble hydrogenase from Aloaligenes eutrophus H16. Biochim. Biophys. Acta 452, 66–80.PubMedGoogle Scholar
  29. 29.
    Schneider, K. and Schlegel, H.G. 1977. Localization and stability of hydrogenases from aerobic hydrogen bacteria. Arch. Microbiol. 112, 229–238.PubMedCrossRefGoogle Scholar
  30. 30.
    Schneider, K., Cammack, R., Schlegel, H.G., and Hall, D.O. 1979. The iron-sulphur centres of soluble hydrogenase from Aloaligenes eutrophus. Biochim. Biophys. Acta 578, 445–461.PubMedGoogle Scholar
  31. 31.
    Emerich, D.W., Ruiz-Arueso, T., Ching, T.M., and Evans, H.J. 1979. Hydrogen-dependent nitrogenase activity and ATP formation in Rhizobium japonicum bacteroids. J. Bacteriol. 137, 153–160.PubMedGoogle Scholar
  32. 32.
    Zeikus, J.G. 1977. The biology of methanogenic bacteria. Bacteriol. Rev. 41, 514–541.PubMedGoogle Scholar
  33. 33.
    Gottschalk, G. 1965. Die Verwertung organische substrate durch Hydrogenomonas in Gegenwart von molekularem Wasserstoff. Biochemische Zeitschrift 341, 260–270.PubMedGoogle Scholar
  34. 34.
    Blackkolb, F. and Schlegel, H.G. 1968. Catabolite repression and enzyme inhibition by molecular hydrogen in hydrogenomonas. Arch. Microbiol. 62, 129–143.CrossRefGoogle Scholar
  35. 35.
    Andersen, K. 1979. Mutations altering the catalytic activity of a plant-type ribulose bisphosphate carboxylase/oxygenase in Aloaligenes eutrophus. Biochim. Biophys. Acta 585, 1–11.PubMedCrossRefGoogle Scholar
  36. 36.
    Maier, R.J., Hanus, F.J. and Evans, H.J. 1979. Regulation of hydrogenase in Rhizobium japonicum. J. Bacteriol. 137, 824–829.Google Scholar
  37. 37.
    Tait, R.C., Andersen, K., Cangelosi, G., and Lim, S.T. 1981 Hydrogen uptake (Hup) plasmids: characterization of mutants and regulation of the expression of hydrogenase. In: Genetic Engineering of Symbiotic Nitrogen Fixation and Conservation of Fixed Nitrogen (D.W. Rains and R.C. Valentine, eds.). New York, Plenum Press. In press.Google Scholar
  38. 38.
    Ogden, S., Haggerty, D., Stoner, C.M., Kolodrubetz, D., and Schleif, R. 1980. The Escherichia coli L-arabionose operon: binding sites of the regulatory proteins and a mechanism of positive and negative regulation. Proc. Natl. Acad. Sci. USA 77, 3346–3350.PubMedCrossRefGoogle Scholar
  39. 39.
    deCrombrugghe, B., Chen, B., Gottesman, M., Pastan, I., Varmus, H.E., Emmer, M., and Perlman, R.L. 1971. Regulation of lac mRNA synthesis in a soluble cell-free system. Nature New Biol. 230, 37–40.Google Scholar
  40. 40.
    deCrombrugghe, B., Chen, B., Anderson, W., Nissley, P., Gottesman, M., and Pastan, I. 1971. Lac DNA, RNA polymerase, and cyclic AMP receptor protein, cyclip AMP, repressor and inducer are the essential elements for controlled Lac Transcription. Nature New Biol. 231, 139–142.PubMedGoogle Scholar
  41. 41.
    Eron, L., Arditt, R., Zubay, G., Connaway, S., and Beckwith, J.R. 1971. An adenosine 3′,5′-cyclic monophosphate-binding protein that acts on the transcription process. Proc. Natl. Acad. Sci. USA 68, 215–218.PubMedCrossRefGoogle Scholar
  42. 42.
    Nissley, S.P., Anderson, W. B., Gottesman, M.E., Perlman, R.L., and Pastan, I. 1971. In vitro transcription of the gal operon requires cyclic adenosine monophosphate and cyclic adenosine monophosphate receptor protein. J. Biol. Chem. 246, 4671–4678.Google Scholar
  43. 43.
    Boone, T. and Wilcox, G. 1978. A rapid high-yield purification procedure for the cyclic adenosine 3′,5′-monophosphate receptor protein from Escherichia coli. Biochim. Biophys. Acta 541, 528–534.PubMedCrossRefGoogle Scholar
  44. 44.
    Emmer, M., deCrombrugghe, B., Pastan, I., and Perlman, R. 1970. Cyclic AMP receptor protein of E. colii its role in the synthesis of inducible enzymes. Proc. Natl. Acad. Sci. USA 66, 480–487.PubMedCrossRefGoogle Scholar
  45. 45.
    Anderson, W.B., Schneider, A.B., Emmer, M., Perlman, R.L., and Pastan, I. 1971. Purification and properties of the cyclic adenosine 3′,5′-monophosphate receptor protein which mediates cyclic adenosine 31,5’-monophosphate-dependent gene transcription in Escherichia coli. J. Biol. Chem. 246, 5929–5937.Google Scholar
  46. 46.
    Reh, M. and Schlegel, H.G. 1975. Chemolithoautotrophicals eine übertragbare, autonome Eigenschaft von Nacardia opaca 1b. Nachr. Akad. Wiss. Göttingen. II. Math.-Phys. Kl 12, 207–216.Google Scholar
  47. 47.
    Pootjes, C.F. 1977. Evidence for plasmid coding of the ability to utilize hydrogen gas by Pseudomonas facilis. Biochem. Biophys. Res. Comm. 76, 1002–1006.PubMedCrossRefGoogle Scholar
  48. 48.
    Brewin, N.J., Beynon, J.L., and Johnston, A.W.BV 1981. The role of Rhizobium plasmids in host specificity. In: Genetic Engineering of Symbiotic Nitrogen Fixation and Conservation of Fixed Nitrogen (D.W. Rains and R.C. Valentine, eds.), New York Plenum Press. In press.Google Scholar
  49. 49.
    Andersen, K., Tait, R.C, and King, W.R. 1980. Plasmids required for utilization of molecular hydrogen. Submitted to Proc. Natl. Acad. Sci. USA.Google Scholar
  50. 50.
    Lim, S.T. 1978. Determination of hydrogenase in free-living cultures of Rhizobium japonicum and energy efficiency of soybean nodules. Plant Physiol. 62, 609–611.PubMedCrossRefGoogle Scholar
  51. 51.
    Macy, J., Kulla, H., and Gottschalk, G. 1976. H2- dependent anaerobic growth of Escherichia coli on L-malate: succinate formation. J. Bacteriol. 125, 423–428.PubMedGoogle Scholar
  52. 52.
    Adams, M.W.W. and Hall, D.O. 1979. Purification of the membrane-bound hydrogenase of Escherichia coli. Biochem. J. 183, 11–22.PubMedGoogle Scholar
  53. 53.
    Ackrell, B.A.C., Asato, R.N. and Mower, H. F. 1966. Multiple forms of bacterial hydrogenases. J. Bacteriol. 92, 828–838.PubMedGoogle Scholar
  54. 54.
    Yamamoto, I. and Ishimoto, M. 1978. Hydrogen-dependent growth of Escherichia coli in anaerobic respiration and the presence of hydrogenases with different functions. J. Biochem. (Tokyo) 84, 673–679.Google Scholar
  55. 55.
    Glick, B.R. Wang, P.Y., Schneider, H., and Martin, W.G. 1980. Identification and partial characterization of Escherichia coli mutant with altered hydrogenase activity. Can. J. Biochem. 58, 361–367.PubMedGoogle Scholar
  56. 56.
    Pascal, M.C., Casse, F., Chippaux, M., and LePelletier, M. 1975. Genetic analysis of mutants of Escherichia coli K-12 and Salmonella typhimurium LT2 deficient in hydrogenase activity. Mol, Gen. Genet. 141, 173–179.CrossRefGoogle Scholar
  57. 57.
    Bachman, B.J. and Low, K.B. 1980. Linkage map of Escherichia coli K-12. Edition 6. Bacteriol. Revs. 44, 1–56.Google Scholar
  58. 58.
    Graham, A., Boxer, D.H., Haddock, B.A., Mandrand-Berthelot, M.A., and Jones, R.W. 1980. Immunochemical analysis of the membrane-bound hydrogenase of Escherichia coli. FEBS Letters 113, 167–172.PubMedCrossRefGoogle Scholar
  59. 59.
    Csonka, L.N. and Clark, A.J. 1979. Deletions generated by the transposon TnlO in the srl reck region of the Escherichia coli K-12 chromosome. Genetics 93, 321–343.PubMedGoogle Scholar
  60. 60.
    Miller, J.F. 1972. Experiments in Molecular Genetics. New York, Cold Spring Harbor Laboratory.Google Scholar
  61. 61.
    Hassan, H.M. and Fridovich, I. 1978. Superoxide radical and the oxygen enchancement of the toxicity of paraquat in Escherichia coli. J. Biol. Chem. 253, 8143–8148.PubMedGoogle Scholar
  62. 62.
    Anand, S.R. and Krasna, A.I. 1965. Catalysis of the H2-HT0 exchange by hydrogenase. A new assay for hydrogenase. Biochemistry 4, 2747–2753.PubMedCrossRefGoogle Scholar
  63. 63.
    Andersen, K. and Shanmugam, K.T. 1980. Energetics of biological nitrogen fixation: determination of the ratio of formation of H2 to NHjl,. catalyzed by nitrogenase of Klebsiella pneumoniae in vivo. J. Gen. Microbiol. 103, 107–122.Google Scholar
  64. 64.
    Horn, S.S.M., Hennecke, H. and Shanmugan, K.T. 1980. Regulation of nitrogenase biosynthesis in Klebsiella pneumoniae: effect of nitrate. J. Gen. Microbiol. 117, 169–179.Google Scholar
  65. 65.
    Bolivar, F., Rodriquez, R.L., Greene, P.J., Betlack, M.C., Heyneker, H.L., Boyer, H.W., Crosa, J.H., and Falkow, S. 1977. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2, 95–113.Google Scholar
  66. 66.
    Ditta, G., Stanfield, S., Corbin, D., and Helinski, D.R. 1980. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci. USA. In press.Google Scholar
  67. 67.
    Clarke, L. and Carbon, J. 1976. A colony bank containing synthetic ColEl hybrid plasmids representative of the entire E. coli genome. Cell 9, 91–99.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • R. C. Tait
    • 1
  • K. Andersen
    • 1
  • G. Cangelosi
    • 1
  • K. T. Shanmugam
    • 1
    • 2
  1. 1.Plant Growth Laboratory, Dept. of Agronomy & Range ScienceUniversity of CaliforniaDavisUSA
  2. 2.Department of Microbiology & Cell Science, IFASUniversity of FloridaGainesvilleUSA

Personalised recommendations