Advertisement

Abstract

Saccharomyces cerewisiae is a lower eukaryote ideal for many current biological studies. It shares certain properties with higher eukaryotes: a nucleus containing multiple chromosomes packed in chromatin structures, and specialized organelles such as vacuoles and mitochondria. In addition, the organization of yeast structural genes is similar to that of higher eukaryotic cells: most functionally related genes are scattered on different chromosomes rather than linked together in operons (21). Yet, while yeast are more complex than bacteria, they still share many of the technical advantages which permitted rapid progress in the genetic and biochemical studies of prokaryotic organisms. Some of the properties which make yeast particularly amenable to study are their short generation time, the existence of both stable haploids and diploids, and the ease of replica plating and mutant isolation. Furthermore, the sophisticated classical genetics of yeast allows one to fully exploit recent technological advances in genetic engineering.

Keywords

Yeast Genome Tetrad Analysis Yeast Genetic Killer Strain Meiotic Progeny 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abelson, J. 1980. Science 209, 1319–1321.PubMedCrossRefGoogle Scholar
  2. 2.
    Bach, M.L. and F. Lacroute. 1972. Mol. Gen. Genet. 115, 126–130.PubMedCrossRefGoogle Scholar
  3. 3.
    Beggs, J.D. 1978. Nature 275, 104–109.PubMedCrossRefGoogle Scholar
  4. 4.
    Borst, P. and L.A. Grivell. 1978. Cell 15, 705–723.PubMedCrossRefGoogle Scholar
  5. 5.
    Bostian, K.A., J.E. Hopper, D.T. Roger, and D.J. Tipper. 1980. Cell 19, 403–414.PubMedCrossRefGoogle Scholar
  6. 6.
    Botstein, D., S.C. Falco, S.E. Stewart, M. Brennan, S. Scherer, D.J. Stinchcomb, K. Struhl, and R. Davis. 1979. Gene 8, 17–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Broach, J.R., J.F. Atkins, C. McGill, and L. Chow. 1979. Cell 16, 827–839.PubMedCrossRefGoogle Scholar
  8. 8.
    Broach, J.R., J.N. Strathern, and J.B. Hicks. 1979. Gene 8, 121–133.PubMedCrossRefGoogle Scholar
  9. 9.
    Bussey, H. 1972. Nature New Biol. 235, 73–75.PubMedGoogle Scholar
  10. 10.
    Bussey, H. and D. Sherman. 1973. Biochim. Biophys. Acta 298, 868–875.PubMedCrossRefGoogle Scholar
  11. 11.
    Cameron, J.R., P. Philippsen, and R. W. Davis. 1977. Nucleic Acids Res. 4, 1429–1448.PubMedCrossRefGoogle Scholar
  12. 12.
    Chatoo, B., F. Sherman, D. Azubalis, T. Fjellstedt, D. Mehnert, and M. Ogur. 1979. Genetics 93:51–65.Google Scholar
  13. 13.
    Church, G., P. Slonimski, W. Gilbert, 1979. Cell 18, 1209–1215.PubMedCrossRefGoogle Scholar
  14. 14.
    Clarke, L. and J. Carbon. 1976. Cell 9, 91–99.PubMedCrossRefGoogle Scholar
  15. 15.
    Clarke-Walker, G.D. and G. L. Miklos. 1974. Eur. J. Biochem. 41, 263–267.CrossRefGoogle Scholar
  16. 16.
    Douglas, H. and D. Hawthorne. 1964. Genetics 49, 837–844.PubMedGoogle Scholar
  17. 17.
    Fink, G.R. 1966. Genetics 53, 445–459.PubMedGoogle Scholar
  18. 18.
    Fisher, C. 1969. Biochem. Biophys. Res. Commun. 34, 306–310.PubMedCrossRefGoogle Scholar
  19. 19.
    Fowell, R.R. 1969. In “The Yeasts”, Vol. 1 (A.H. Rose and J. S. Harrison, eds.), Academic Press, N.Y., 303–383.Google Scholar
  20. 20.
    Gerbaud, C., P. Fournier, H. Blanc, M. Aigle, H. Heslot, and M. Guerineau. 1979. Gene.5, 233–253.PubMedCrossRefGoogle Scholar
  21. 21.
    Greer, H. and G.R. Fink. 1975. In “Methods in Cell Biology, Vol. XI, Yeast Cells.” (D. Prescott, ed.) Academic Press, N.Y. 247–272.Google Scholar
  22. 22.
    Grunstein, M. and D.S. Hogness. 1975. Proc. Natl. Acad. Sci. USA 72, 3961–3965.Google Scholar
  23. 23.
    Guerineau, M., C. Grandchamp, P.P. Slonimski. 1976. Proc. Natl. Acad. Sci. USA 73, 3030–3034.Google Scholar
  24. 24.
    Hartwell, L.H. 1974. Bacteriol. Rev. 38, 164–198.PubMedGoogle Scholar
  25. 25.
    Hawthorne, D.C. and R.K. Mortimer. 1960. Genetics 45, 1085–1110.PubMedGoogle Scholar
  26. 26.
    Henry, S., T. Donahue, and M. Culbertson. 1975. Molec. Gen. Genet. 143, 5–11.PubMedCrossRefGoogle Scholar
  27. 27.
    Herring, A.J. and E.A. Bevan. 1974. J. Gen. Virol. 22, 387–394.PubMedCrossRefGoogle Scholar
  28. 28.
    Hicks, J., J. Strathern, and I. Herskowitz. 1977. In “DNA Insertion Elements, Plasmids and Episomes” (A. Bukhari, J. Shapiro, and S. Adhya, eds.). Cold Spring Harbor Laboratory, N.Y., 457–462.Google Scholar
  29. 29.
    Hicks, J.B., A. Hinnen, and G.R. Fink. 1978. Cold Spring Harbor Symp. Quant. Biol. 43, 1305–1313.CrossRefGoogle Scholar
  30. 30.
    Hicks, J., J. Strathern, and A.J. Klar. 1979. Nature 282, 478–483.PubMedCrossRefGoogle Scholar
  31. 31.
    Hilger, F. and R.K. Mortimer. 1980. J. Bact. 141, 270–274.PubMedGoogle Scholar
  32. 32.
    Hinnen, A., J. Hicks, and G.R. Fink. 1978. Proc. Natl. Acad. Sci. USA 75, 1929–1933.PubMedCrossRefGoogle Scholar
  33. 33.
    Hinnen, A., P. Farabaugh, C. Ilgen, and G.R. Fink. 1979. ICN-UCLA Symp. 14, 43–50.Google Scholar
  34. 34.
    Hitzeman, R.A., A.C. Chinault, A.J. Kingsman, and J. Carbon. 1979. INC-UCLA Symp. 14, 57–68.Google Scholar
  35. 35.
    Hollenberg, C.P., P. Borst, E.F. Van Bruggen. 1970. Biochim. Biophys. Acta 209, 1–15.PubMedGoogle Scholar
  36. 36.
    Hollenberg, C.P., A. Degelmann, B. Kustermann-Kuhn, and H.D. Royer. 1976. Proc. Natl. Acad. Sci. USA 72, 2072–2076.CrossRefGoogle Scholar
  37. 37.
    Hsiao, C.H. and J. Carbon. 1979. Proc. Natl. Acad. Sci. USA 76, 3829–3833.PubMedCrossRefGoogle Scholar
  38. 38.
    Johnston, J.R. and R.K. Mortimer. 1959. J. Bact. 78. 292.PubMedCrossRefGoogle Scholar
  39. 39.
    Korch, C., F. Lacroute, and F. Exinger. 1974. Mol. Gen. Genet. 133, 63–75.PubMedCrossRefGoogle Scholar
  40. 40.
    Lauer, G., T.M. Roberts, and L.C. Klotz. 1977. J. Mol. Biol. 114, 507–526.PubMedCrossRefGoogle Scholar
  41. 41.
    Lazowka, J., C. Jacq, P. Slonimski. 1980. Cell 22, 333–348.CrossRefGoogle Scholar
  42. 42.
    Linnane, A.W., J.M. Haslam, H.B. Lukins, and P. Nagley. 1972. Ann. Rev. Microbiol. 25, 163–198.Google Scholar
  43. 43.
    Livingston, D.M. 1977. Genetics 86, 73–84.PubMedGoogle Scholar
  44. 44.
    Mortimer, R.K. and D.C. Hawthorne. 1969. In “The Yeasts”, Vol. I, (A.H. Rose and J.S. Harrison, eds.). Academic Press, N.Y. 385–460.Google Scholar
  45. 45.
    Mortimer, R.K. and T.R. Manney. 1971. In “Chemical Mutagens” Vol. I. (A. Hollaender, ed.), Plenum Press, N.Y., p. 289–310.CrossRefGoogle Scholar
  46. 46.
    Mortimer, R.K. and D.C. Hawthorne 1973. Genetics 74., 33–54.PubMedGoogle Scholar
  47. 47.
    Mortimer, R.K. and D.C. Hawthorne 1975. In “Methods in Cell Biology”, Vol. XI (D.M. Prescott, ed.). Academic Press, N.Y. 221–233.Google Scholar
  48. 48.
    Nagley, P. and A.W. Linnane. 1972. J. Mol. Biol. 66, 181–193.PubMedCrossRefGoogle Scholar
  49. 49.
    Nasmyth, K.A. and K. Tatchell. 1980. Cell 19, 753–764.PubMedCrossRefGoogle Scholar
  50. 50.
    Perkins, D.D. 1949. Genetics 34, 607–626.Google Scholar
  51. 51.
    Petes, T. 1980. Ann. Rev. Biochem. 49, 845–876.PubMedCrossRefGoogle Scholar
  52. 52.
    Petes, T. and D.H. Williamson. 1975. Cell 4, 249–253.PubMedCrossRefGoogle Scholar
  53. 53.
    Ratzkin, B. and J. Carbon. 1977. Proc. Natl. Acad. Sci. USA 24, 487–491.CrossRefGoogle Scholar
  54. 54.
    Seherer, S. and R.W. Davis. 1979. Proc. Natl. Acad. Sci. USA 76, 4951–4955.CrossRefGoogle Scholar
  55. 55.
    Sherman, F. 1975. In “Methods in Cell Biology, Vol. XI. Yeast Cells.” (D. Prescott, ed.). Academic Press, N.Y., 189–199.Google Scholar
  56. 56.
    Sherman, F. and H. Roman. 1963. Genetics 48, 255–261PubMedGoogle Scholar
  57. 57.
    Sherman, F. and C. W. Lawrence. 1974. In “Handbook of Genetics” Vol. 1. (R.C. King, ed.). Plenum Publishing Corporation, N.Y. 359–393.Google Scholar
  58. 58.
    Sherman, F., J. Stewart, M. Jackson, R. Gilmore, and J. Parker. 1974. Genetics 77, 255–284.PubMedGoogle Scholar
  59. 59.
    Silver, J. and N. Eaton. 1969. Biochem. Biophys. Res. Commun. 34, 301–305.PubMedCrossRefGoogle Scholar
  60. 60.
    Sinclair, J.H., B.J. Stevens, P. Sanghavi, and M. Rabinowitz. 1967. Science 156, 1234–1237.PubMedCrossRefGoogle Scholar
  61. 61.
    Snow, R. 1966. Nature 211, 206–207.PubMedCrossRefGoogle Scholar
  62. 62.
    Somers, J.M. and E.A. Bavan. 1969. Genet. Res. 13, 71–83.PubMedCrossRefGoogle Scholar
  63. 63.
    Stinchcomb, D.T., K. Struhl, and R.W. Davis. 1979. Nature 282, 39–43.PubMedCrossRefGoogle Scholar
  64. 64.
    Storms, R.K., J.B. McNeil, P. S. Khandlkar, G. An, J. Parker, and J. D. Friesen. 1979. J. Bacteriol. 140, 73–82.PubMedGoogle Scholar
  65. 65.
    Struhl, K., D.T. Stinchcomb, S. Scherer, and R.W. Davis. 1979. Proc. Natl. Acad. Sci. USA 76, 1035–1039.PubMedCrossRefGoogle Scholar
  66. 66.
    Szostak, J. and R. Wu. 1979. Plasmid 2, 536–554.PubMedCrossRefGoogle Scholar
  67. 67.
    Takano, I. and Y. Oshima. 1970. Genetics 65, 421–427.PubMedGoogle Scholar
  68. 68.
    Thouvenot, D.R. and C.M. Bourgeois. 1971. Ann. Inst. Pasteur 120, 617–625.Google Scholar
  69. 69.
    Walton, E.F., B.L. Carter, and J.R. Pringle. 1979. Molec. Gen. Genet. 171, 111–114.CrossRefGoogle Scholar
  70. 70.
    Wickner, R. 1978. Genetics 88, 419–425.PubMedGoogle Scholar
  71. 71.
    Wickner, R. 1979. Genetics 92, 803–821.PubMedGoogle Scholar
  72. 72.
    Williamson, D.H. 1970. Symp. Soc. Exp. Biol. 24, 247–276.Google Scholar
  73. 73.
    Williamson, V.M., J. Bennetzen, E.T. Young, K. Nasmyth, and B.D. Hall. 1979. Nature 283, 214–216.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Helen Greer
    • 1
  1. 1.Cellular and Developmental BiologyHarvard UniversityCambridgeUSA

Personalised recommendations