The Biochemical Genetics of Glycolysis in Microbes

  • Dan G. Fraenkel
Part of the Basic Life Sciences book series


Mutants for most reactions of glycolysis have been described both in Escherichia coli and in Sacchavomyces cevevisiae The pathway between glucose and pyruvate has three irreversible and seven reversible reactions (Figure 1), and most of the intermediates are needed in biosynthesis. Thus, one might expect mutants in an irreversible step to be impaired in growth on glucose but unimpaired gluconeogenically, and mutants in a reversible step to require supplementation even for gluconeogenic growth. To a first approximation this pattern is found but there are deviations (Table I). For example, E, coli mutants blocked between triose-P and phosphoenol-pyruvate do require supplementation (e.g., by glycerol) for growth on lactate (1,2) but phosphoglucose isomerase mutants grow without supplementation by glucose (3) — probably because glucose-6-P and its products are not essential for growth of this organism. Aldolase mutants also do not require supplementation for gluconeogenic growth, and the explanation is unknown; it might relate to other aldolases (see ref. 4). The growth on glucose of a (double) pyruvate kinase mutant occurs because phosphoenolpyruvate is used by the phosphotransferase (PTS) reaction intiating glucose metabolism and such a mutant fails to grown on non-PTS sugars (5).


Pyruvate Kinase Triose Phosphate Isomerase Phosphoglucose Isomerase Hybrid Plasmid Glycolysis Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Irani, M., and Maitra, P.K. 1974. Isolation and characterization of Escherichia coli. mutants defective in enzymes of glycolysis. Biochem. Biophys. Res. Commun. 56, 127–133.CrossRefGoogle Scholar
  2. 2.
    Hillman, J.D., and Fraenkel, D.G. 1975. Glyceraldehyde 3-phosphate dehydrogenase mutants of Escherichia coli. J. Bacteriol, 122, 1175–1179.PubMedGoogle Scholar
  3. 3.
    Vinopal, R.T., Hillman, J.D., Schulman, H., Reznikoff, W.S., and Fraenkel, D.G. 1975. New phosphoglucose isomerase mutants of Escherichia coli. J. Bacteriol. 122, 1172–1174.PubMedGoogle Scholar
  4. 4.
    Lengler, J. 1977. Analysis of mutations affecting the dissimilation of galactitotl (dulcitol) in Escherichia coli. K 12. Molec. gen. Genet. 152, 83–91.Google Scholar
  5. 5.
    Pertierra, A.G., and Cooper, R.A. 1977. Pyruvate formation during the catabolism of simple hexose sugars by Escherichia coli: studies with pyruvate kinase-negative mutants. J. Bacteriol. 129, 1208–1214.PubMedGoogle Scholar
  6. 6.
    Fraenkel, D.G., and Vinopal, R.T. 1973. Carbohydrate metabolism in bacteria. Ann. Rev. Micro. 27, 69–100.CrossRefGoogle Scholar
  7. 7.
    Irani, M.H., and Maitra, P.K. 1977. Properties of Escherichia coli mutants deficient in enzymes of glycolysis. J. Bacterid. 132, 398–410.Google Scholar
  8. 8.
    Hillman, J.D. 1979. Mutant analysis of glyceraldehyde-3-P dehydrogenase in Escherichia coli Biochem. J. 179, 99–107.Google Scholar
  9. 9.
    Roehl, R..A. and Vinopal, R.T. 1980. Genetic locus, distinct from ptsM, affecting enzyme IIA/11B function in Escherichia coli. K-12. J. Bacteriol. 142, 120–130.PubMedGoogle Scholar
  10. 10.
    Riley, M., and Anilionis 1978. Evolution of the bacterial genome. Ann. Rev. Microbiol. 32, 519–560.CrossRefGoogle Scholar
  11. 11.
    Varenne, S., Gasse, F., Chippaux, M., and Pascal, M.C. 1975. A mutant of Escherichia coli deficient in pyruvate formate lyase. Molec. gen. Genet. 141, 181–184.Google Scholar
  12. 12.
    Pascal, M.C., Casse, F., Chippaux, M., and Lepelletier, M. 1973. Genetic analysis of mutants of Salmonella typhimurium deficient in formate dehydrogenase activity. Molec. gen. Genet. 120, 337–340.PubMedGoogle Scholar
  13. 13.
    Pascal, M. C., Casse, F., Chippaux, M., Lepelletier, M. 1975. Genetic analysis of mutants of Escherichia coli K 12 and Salmonella typhimurivm. LT2 deficient in hydrogenase activity. Molec. gen. Genet. 141, 173–179.PubMedCrossRefGoogle Scholar
  14. 14.
    Ruiz-Herrera, J., and Alvarez, A. 1972. A physiological study of formate dehydrogenase, formate oxidase and hydrogenlyase from Escherichia coli K-12. Antonie van Leeuwenhoek 38, 479–491.CrossRefGoogle Scholar
  15. 15.
    Mandrand-Berthelot, M.-A., Wee, M.Y.K., and Haddock, B.A. 1978. An improved method for the identification and characterization of mutants of Escherichia coli. deficient in formate dehydrogenase activity. FEMS Microbiol. Lett. 4, 37–40.CrossRefGoogle Scholar
  16. 16.
    Brown, T.D.K., Jones-Mortimer, M.C., and Kornberg, H.L. 1977. The enzymatic interconversion of acetate and acetyl-CoA in Escherichia coli. J. Gen. Microbiol. 102, 327–336.PubMedGoogle Scholar
  17. 17.
    LeVine, S.M., Ardeshir, F., and Ames, G.F.-L. 1980. Isolation and characterization of acetate kinase and phosphotransacety-lase mutants of Escherichia coli and Salmonella typhimurivm. J. Bacteriol. 143. 1081–1085.Google Scholar
  18. 18.
    Clark, D.P., and Cronan, J.E. Jr. 1980. Acetaldehyde coenzyme A dehydrogenase of Escherichia coli. J. Bacteriol 144, 179–184.PubMedGoogle Scholar
  19. 19.
    Guest, J.R. 1979. Anaerobic growth of Escherichia coli. K 12 with fumarate as terminal electron acceptor. Genetic studies with menaquinone and fluoroacetate-resistant mutants. J. Gen. Microbiol.115, 259–271.Google Scholar
  20. 20.
    Fraenkel, D.G. 1981. Carbohydrate metabolism. In Molecular Genetics of Yeast. Cold Spring Harbor, in press.Google Scholar
  21. 21.
    Lobo, Z., and Maitra, P.K. 1977. Physiological role of glucose phosphorylating enzymes in Saccharomyces cerevisiae. Arch. Biochem. Biophys. 182, 639–645.PubMedCrossRefGoogle Scholar
  22. 22.
    Ciriacy, M., and Breitenbach, I. 1979. Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae. J. Bacterid. 139, 152–160.Google Scholar
  23. 23.
    Ciriacy, H. 1979. Isolation and characterization of further cis- and trans-acting regulatory elements involved in the synthesis of glucose repressible alcohol dehydrogenase (ADH1I) in Saccharomyces cerevisiae. Mol. Gen. Genet. 176, 427–431.PubMedCrossRefGoogle Scholar
  24. 24.
    Lam, K.-B., and Marmur, J. 197. Isolation and characterization of Saccharomyces cerevisiae glycolysis mutants. J. Bacteriol. 130, 746–749.Google Scholar
  25. 25.
    Wills, C, and Phelps, J. 1975. A technique for the isolation of yeast alcohol dehydrogenase mutants with altered substrate specificity. Arch. Biochem. Biophys. 167, 627–637.PubMedCrossRefGoogle Scholar
  26. 26.
    Morrissey, A.T.E. 1971. Phosphofructokinase mutants of Escherichia coli. Ph.D. Thesis, Harvard University.Google Scholar
  27. 27.
    Wolf, R.E. Jr., and Fraenkel, D.G. 1974. Isolation of specialized transducing bacteriophages for gluconate 6-phos-phate dehydrogenase (gnd) of Escherichia coli. J. Bacteriol. 117, 468–476.PubMedGoogle Scholar
  28. 28.
    Clarke, L., and Carbon, J. 1976. A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome. Cell 9, 91–99.PubMedCrossRefGoogle Scholar
  29. 29.
    Thomson, J. 1977. E. coli phosphofructokinase synthesized in vitro from a Col El hybrid plasmid. Gene 1, 347–356.PubMedCrossRefGoogle Scholar
  30. 30.
    Hitzeman, R.A., Chinault, A.C., Kingsman, A.J., and Carbon, J. 1979. Detection of E. coli clones containing specific yeast genes by immunological screening. ICN-UCLA Symp. MoXec. Cell Biol. 14, 57–68.Google Scholar
  31. 31.
    Holland, M.J., and Holland, J.P. 1979. Isolation and characterization of a gene coding for glyceraldehyde-3-phosphate dehydrogenase from Saccharomyces cerevisiae. J. Biol. Chem. 254, 5466–5474.PubMedGoogle Scholar
  32. 32.
    Holland, M.J., Hager, G.L., and Rutter, W.J. 1977. Characterization of purified poly(adenylic acid)-containing messenger ribonucleic acid from Saccharomyces cerevisiae. Biochemistry 16, 8–16.PubMedCrossRefGoogle Scholar
  33. 33.
    Holland, J.P., and Holland, M.J. 1979. The primary structure of a glyceraldehyde-3-P dehydrogenase gene from Saccharomyces cerevisiae. J. Biol. Chem. 254, 9839–9845.PubMedGoogle Scholar
  34. 34.
    Broach, J.R., Strathern, J.N., and Hicks, J.B. 1979. Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene 8, 121–133.PubMedCrossRefGoogle Scholar
  35. 35.
    Reichelt, J.L., and Doelle, H.W. 1971. The influence of dissolved oxygen concentration on phosphofructokinase and the glucose metabolism of Escherichia coli K-12. Antonie van leeuwenhoek 37, 497–506.PubMedCrossRefGoogle Scholar
  36. 36.
    Kotlarz, D., Garreau, H., and Bue, H. 1975. Regulation of the amount and of the activity of phosphofructokinases and pyruvate kinases in Escherichia coli. Biochim. Biophys. Acta 381, 257–268.PubMedCrossRefGoogle Scholar
  37. 37.
    Wolf, R.E., Jr., Prather, D.M. and Shea, F.M. 1979. Growth-rate-dependent alternation of 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase levels in Escherichia coli K-12. J. Bacteriol. 139, 1093–1096.PubMedGoogle Scholar
  38. 38.
    Oura, E. 1974. Effect of aeration intensity on the biochemical composition of Baker’s yeast. I. Factors affecting the type of metabolism. Biotech. Bioeng. XVI, 1197–1212.CrossRefGoogle Scholar
  39. 39.
    Maitra, P.K., and Lobo, Z. 1971a. A kinetic study of glycolytic enzyme synthesis in yeast. J. Biol. Chem. 246, 475–488.PubMedGoogle Scholar
  40. 40.
    Maitra, P.K., and Lobo, Z. 1971b. Control of glycolytic enzyme synthesis in yeast by products of the hexokinase reaction. J. Biol. Chem. 246, 489–499.PubMedGoogle Scholar
  41. 41.
    Daldal, F., Babul, J., Guixe, V., and Fraenkel, D.G. 1981. Gluconeogenic impairment in a phosphofructokinase mutant of Escherichia coli. To be submitted.Google Scholar
  42. 42.
    Daldal, F., and Fraenkel, D.G. 1981. Assessment of gluconeogenic futile cycling in Escherichia coli. To be submitted.Google Scholar
  43. 43.
    Bachmann, B.J., and Low, K.B. 1980. Linkage map of Escherichia coli. K-12, Edition 6. Microbiol. Rev. 44, 1–56.Google Scholar
  44. 44.
    Thomson, J., Gerstenberger, P.D., Goldberg, D., Gociar, E., Orozco de Silva, A., and Fraenkel, D.G. 1979. ColEl hybrid Plasmids for Escherichia coli. genes of glycolysis and the hexose monophosphate shunt. J. Bacteriol. 137, 502–506.PubMedGoogle Scholar
  45. 45.
    Clifton, D., and Fraenkel, D.G. 1980. The gcr (glycolysis regulation) mutation of Saccharomyces cerevisiae. (To be submitted.)Google Scholar
  46. 46.
    Robison, J.P., and Fraenkel, D.G. 1978. Allosteric and non-allosteric E. coli phosphofructokinases: effects on growth. Biochem. Biophys. Res. Commun. 81, 858–863.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Dan G. Fraenkel
    • 1
  1. 1.Department of Microbiology and Molecular GeneticsHarvard Medical SchoolBostonUSA

Personalised recommendations