Calcium Transport and the Release of Neurotransmitters: Effects of Drugs in Vivo and in Vitro

  • Ricardo Tapia
  • Clorinda Arias


The role of calcium ions in neurotransmitter release is now amply recognized. External calcium appears to enter the presynaptic terminal upon depolarization, and the increase in its intraterminal cytoplasmic concentration somehow induces the release of the neurotransmitter (21,25,26,39,40,51). In vertebrates this phenomenon occurs both at neuromuscular junctions, where the release of acetylcholine (ACh) occurs probably from synaptic vesicles, and in central synapses, where the role of vesicles is less clear. Thus, in several preparations from mammalian central nervous system, such as tissue slices or synaptosomes, it has been shown that the depolarization-induced release of catecholamines (6,10), ACh (8,45,64) or neurotransmitter amino acids such as GABA (10,16,27,44,56), glutamate (9,53) or glycine (27,44) is a phenomenon dependent on the presence of external Ca2+. Because of this necessity for Ca2+ transport across the presynaptic membrane in order to induce transmitter release, drugs capable of modifying Ca2+ transport should affect the release of neurotransmitters. This approach has been followed in the present communication in two different ways: 1) drugs which block Ca2+ transport or apparently increase its cytoplasmic concentration at the nerve terminals have been injected to experimental animals, and 2) the effect of such drugs on neurotransmitter release has been studied in synaptosomes prepared from brain tissue.


Neuromuscular Junction Neurotransmitter Release Transmitter Release Spontaneous Release Gaba Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alnaes, E. and Rahamimoff, R., On the role of mitochondria in transmitter release from motor nerve terminals, J. Physiol. (Lond.), 248 (1975) 285–306.Google Scholar
  2. 2.
    Archibald, J. T. and White, T. D., Rapid reversal of internal Na+ and K+ of synaptosomes by ouabain, Nature, 255 (1974) 595–596.CrossRefGoogle Scholar
  3. 3.
    Batra, S.,Mitochondrial calcium release as a mechanism for quinidine contracture in skeletal muscle, Biochem. Pharmacol., 25 (1976) 2631–2633.PubMedCrossRefGoogle Scholar
  4. 4.
    Blaustein, M. P., Effects of potassium, veratridine, and scorpion venom on calcium accumulation and transmitter release by nerve terminals in vitro, J. Physiol. (Lond.), 247 (1975) 617–655.Google Scholar
  5. 5.
    Blaustein, M. P. and Goldring, J. M., Membrane potentials in pinched-off presynaptic terminals monitored with a fluorescent probe: evidence that synaptosomes have potassium diffusion potentials, J. Physiol. (Lond.), 247 (1975) 589–615.Google Scholar
  6. 6.
    Blaustein, M. P., Johnson, E. N. and Needleman, P., Calcium- dependent norepinephrine release from presynaptic nerve endings in vitro, Proc. Nat. Acad. Sci. U.S.A., 69 (1972) 2237–2240.CrossRefGoogle Scholar
  7. 7.
    Carafolí, E. and Lehninger, A. L., A survey of the interaction of calcium ions with mitochondria from different tissues and species, Biochem. J., 122 (1971) 681–690.PubMedGoogle Scholar
  8. 8.
    Carroll, P. T. and Goldberg, A. M., Relative importance of choline transport to spontaneous and potassium depolarized release of ACh, J. Neurochem. 25 (1975) 523–527.PubMedCrossRefGoogle Scholar
  9. 9.
    Cotman, C. W. and Bamberger, A., Glutamate as a CNS neurotransmitter: properties of release, inactivation and biosynthesis. In F. Fonnum (Ed.), Amino Acids as Chemical Transmitters, Plenum, New York, 1978, pp. 379–412.Google Scholar
  10. 10.
    Cotman, C. W., Haycock, J. W. and White, W. F., Stimulus-secretion coupling processes in brain: analysis of noradrenaline and gamma-amínobutyric acid release, J. Physiol. (Lond.), 254 (1976) 475–505.Google Scholar
  11. 11.
    Duncan, C. J. and Statham, H. E., Interacting effects of temperature and extracellular calcium on the spontaneous release of transmitter at the frog neuromuscular junction, J. Physiol. (Lond.), 268 (1977) 319–333.Google Scholar
  12. 12.
    Farley, J. M., Glavinovic, M. I., Watanabe, S. and Narahashí, T., Stimulation of transmitter release by guanidine derivatives, Neuroscience, 4 (1979) 1511–1519.PubMedCrossRefGoogle Scholar
  13. 13.
    Goddard, G. A. and Robinson, J. D., Uptake and release of calcium by rat brain synaptosomes, Brain Res., 110 (1976) 331–350.PubMedCrossRefGoogle Scholar
  14. 14.
    Heuser, J. and Miledi, R., Effect of lanthanum ions on function and structure of frog neuromuscular junctions, Proc. Roy. Soc. Lond. B., 179 (1971) 247–260.CrossRefGoogle Scholar
  15. 15.
    Jacobs, R. S. and Burley, E. S., Nerve terminal facilitatory action of 4-aminopyridine: an analysis of the rising phase of the endplate potential, Neuropharmacology, 17 (1978) 439–444.PubMedCrossRefGoogle Scholar
  16. 16.
    Johnston, G. A. R., Effects of calcium on the potassium-stimulated release of radioactive β-alanine and γ-aminobutyric acid from slices of rat cerebral cortex and spinal cord, Brain Res., 121 (1977) 179–181.PubMedCrossRefGoogle Scholar
  17. 17.
    Kamenskaya, M. A., Elmqvist, D. and Thesleff, S., Guanidine and neuromuscular transmission. I. Effect on transmitter release occurring spontaneously and in response to single nerve stimuli, Arch. Neurol., 32 (1975) 505–509.PubMedCrossRefGoogle Scholar
  18. 18.
    Kamenskaya, M. A., Elmqvist, D. and Thesleff, S., Guanidine and neuromuscular transmission. II. Effect on transmitter release in response to repetitive nerve stimulation, Arch. Neurol., 32 (1975) 510–518.PubMedCrossRefGoogle Scholar
  19. 19.
    Kamino, K., Ogawa, M., Uyesaka, N. and Inouye, A., Calcium-binding of synaptosomes isolated from rat brain cortex. IV. Effects of ruthenium red on the co-operative nature of calcium-binding, J. Membrane Biol., 26 (1976) 345–356.CrossRefGoogle Scholar
  20. 20.
    Katz, B. and Miledi, R., A study of synaptic transmission in the absence of nerve impulses, J. Physiol. (Loud.), 192 (1967) 407–436.Google Scholar
  21. 21.
    Katz, B. and Miledi, R., Tetrodotoxin-resistant electric activity in presynaptic terminals, J. Physiol. (Lond.), 203 (1969) 459–487.Google Scholar
  22. 22.
    Kleineke, J. and Stratman, F. W., Calcium transport in isolated rat hepatocytes, FEES Letters, 43 (1974) 75–80.CrossRefGoogle Scholar
  23. 23.
    Levy, W. B., Haycock, J. W. and Cotman, C. W., Effects of polyvalent cations on stimulus-coupled secretion of F4C7 -)f-aminobutyric acid from isolated brain synaptosomes, Mol. Pharmacol., 10 (1974) 438–449.Google Scholar
  24. 24.
    Li, P. P. and White, T. D., Rapid effects of veratridine, tetrodotoxin, gramicidin D, valinomycin and NaCN on the Nat, K+ and ATP contents of synaptosomes, J. Neurochem., 28 (1977) 967–975.PubMedCrossRefGoogle Scholar
  25. 25.
    Llinâs, R. and Heuser, J. E., Depolarization-release coupling systems in neurons, Neurosci. Res. Progr. Bull., 15 (1977) 557–687.Google Scholar
  26. 26.
    Llinâs, R. and Nicholson, C., Calcium role in depolarization-secretion coupling: an aequorin study in squid giant synapse, Proc. Nat. Acad. Sci. U.S.A., 72 (1975) 187–190.CrossRefGoogle Scholar
  27. 27.
    López-Colomé, A. M., Tapia, R., Salceda, R. and Pasantes-Morales, H., K+-stimulated release of labeled;r’-aminobutyrate, glycine and taurine in slices of several regions of rat central nervous system, Neuroscience, 3 (1978) 1069–1074.PubMedCrossRefGoogle Scholar
  28. 28.
    Luft, J. H., Ruthenium red and Violet. I. Fine structural localization in animal tissues, Anat. Rec., 171 (1971) 369–416.PubMedCrossRefGoogle Scholar
  29. 29.
    Lundh, H., Effects of 4-aminopyridine on neuromuscular transmission, Brain Res., 153 (1978) 307–318.PubMedCrossRefGoogle Scholar
  30. 30.
    Lundh, H., Cull-Candy, S. G., Leander, S. and Thesleff, S., Restoration of transmitter release in botulinum-poisoned skeletal muscle, Brain Res., 110 (1976) 194–198.PubMedCrossRefGoogle Scholar
  31. 31.
    Lundh, H., Leander S. and Thesleff, S., Antagonism of the paralysis produced by botulinum toxin in the rat. The effects of tetraethylammonium, guanidine and 4-aminopyridine, J. Neurol. Sci., 32 (1977) 29–43.PubMedCrossRefGoogle Scholar
  32. 32.
    Lundh, H. and Thesleff, S., The mode of action of 4-aminopyridine and guanidine on transmitter release from motor nerve terminals, Eur. J. Pharmacol., 42 (1977) 411–412.PubMedCrossRefGoogle Scholar
  33. 33.
    Madden, K. S. and Van der Kloot, W., Surface charges and the effects of calcium on the frequency of miniature end-plate potentials at the frog neuromuscular junction, J. Physiol. (Lond.), 276 (1978) 227–232.Google Scholar
  34. 34.
    Madeira, V. M. C. and Antunes-Madeira, M. C., Interaction of Ca2+ and Mg2+ with synaptic plasma membranes, Biochim. Biophys. Acta, 323 (1973) 396–407.PubMedCrossRefGoogle Scholar
  35. 35.
    Matthews, G. and Wickelgren, W. O., Effects of guanidine on transmitter release and neuronal excitability, J. Physiol. (Lond.), 266 (1977) 69–89.Google Scholar
  36. 36.
    Matthews, G. and Wickelgren, W. O., On the effect of calcium on the frequency of miniature end-plate potentials at the frog neuromuscular junction, J. Physiol. (Lond.), 266 (1977) 91–101.Google Scholar
  37. 37.
    Meldrum, B. S., Epilepsy and γ-aminobutyric acid mediated inhibition, Intern. Rev. Neurobiol., 17 (1975) 1–36.CrossRefGoogle Scholar
  38. 38.
    Meza-Ruiz, G. and Tapia, R., [3H] GABA release in synaptosomal fractions after intracranial administration of ruthenium red, Brain Res., 154 (1978) 163–166.PubMedCrossRefGoogle Scholar
  39. 39.
    Miledi, R., Transmitter release induced by injection of calcium ions into nerve terminals, Proc. Roy. Soc. Lond. B., 183 (1973) 421–425.CrossRefGoogle Scholar
  40. 40.
    Miledi, R. and Slater, C. R., The action of calcium on neuronal synapses in the squid, J. Physiol. (Lond.), 184 (1966) 473–498.Google Scholar
  41. 41.
    Molgo, J., Lemeignan, M. and Lechat, P., Effects of 4-aminopyridine at the frog neuromuscular junction, J. Pharmacol. Exp. Ther., 203 (1977) 653–663.PubMedGoogle Scholar
  42. 42.
    Molgo, J., Lemeignan, M. and Lechat, P., Analysis of the action of 4-aminopyridine during repetitive stimulation at the neuromuscular junction, Eur. J. Pharmacol., 53 (1979) 307–311.PubMedCrossRefGoogle Scholar
  43. 43.
    Moore, C. L., Specific inhibition of mitochondria) Ca++ transport by ruthenium red, Biochem. Biophys. Res. Comm., 42 (1971) 298–305.PubMedCrossRefGoogle Scholar
  44. 44.
    Mulder, A. H. and Snyder, S. H., Potassium-induced release of amino acids from cerebral cortex and spinal cord slices of the rat, Brain Res., 76 (1974) 297–308.PubMedCrossRefGoogle Scholar
  45. 45.
    Murrin, L. C., DeHaven, R. N. and Kuhar, M. J., On the relationship between [3H] choline uptake activation and [3H] acetylcholine release, J. Neurochem., 29 (1977) 681–687.PubMedCrossRefGoogle Scholar
  46. 46.
    Osborne, R. H. and Bradford, H. F., The influence of sodium, potassium and lanthanum on amino acid release from spinal-medullary synaptosomes, J. Neurochem., 25 (1975) 35–41.PubMedCrossRefGoogle Scholar
  47. 47.
    Otsuka, M. and Endo, M., The effect of guanidine on neuromuscular transmission, J. Pharmacol. Exp. Ther., 128 (1960) 273–282.PubMedGoogle Scholar
  48. 48.
    Person, R. J. and Kuhn, J. A., Depression of spontaneous and ionophore-induced transmitter release by ruthenium red at the neuromuscular junction, Brain Res. Bull., 4 (1979) 669–674.PubMedCrossRefGoogle Scholar
  49. 49.
    Pfeiffer, D. R., Taylor, R. W. and Lardy, H. A., Ionophore A23187: cation binding and transport properties, Ann. N. Y. Acad. Sci., 307 (1978) 402–423.CrossRefGoogle Scholar
  50. 50.
    Prestipino, G., Ceccarelli, D., Conti, F. and Carafoli, E., Interactions of a mitochondrial Ca2+-binding glycoprotein with lipid bilayer membranes, FEBS Letters, 45 (1974) 99–103.PubMedCrossRefGoogle Scholar
  51. 51.
    Rubin, R. P., Calcium and the Secretory Process. Plenum, New York, 1974, 189 pp.Google Scholar
  52. 52.
    Sandoval, M. E., Studies on the relationship between Ca2+ efflux from mitochondria and the release of amino acid neurotransmitters, Brain Res., 181 (1980) 357–367.PubMedCrossRefGoogle Scholar
  53. 53.
    Sandoval, M. E., Horch, P. and Cotman, C. W., Evaluation of glutamate as a hippocampal neurotransmitter: glutamate uptake and release from synaptosomes, Brain Res., 142 (1978) 285–299.PubMedCrossRefGoogle Scholar
  54. 54.
    Shalton, P. M. and Wareham, A. C., Calcium ionophore A-23187 and spontaneous miniature end-plate potentials of mammalian skeletal muscle, Exp. Neurol., 63 (1979) 379–387.PubMedCrossRefGoogle Scholar
  55. 55.
    Singer, M., Krishnan, N. and Fyfe, D. A., Penetration of ruthenium red into peripheral nerve fibers, Anat. Rec., 173 (1972) 375–390.PubMedCrossRefGoogle Scholar
  56. 56.
    Srinivasan, V., Neal, M. J. and Mitchell, J. F., The effect of electrical stimulation and high potassium concentrations on the efflux of 3H- γ-aminobutyric acid from brain slices, J. Neurochem. 16 (1969) 1235–1244.PubMedCrossRefGoogle Scholar
  57. 57.
    Tapia, R. The role of γ-aminobutyric acid metabolism in the regulation of cerebral excitability. In R. D. Myers and R. R. Drucker-Colin (Eds.), Neurohumoral Coding of Brain Function, Plenum, New York, 1974, pp. 3–26.Google Scholar
  58. 58.
    Tapia, R. Biochemical pharmacology of GABA in CNS. In L. L. Iversen, S. D. Iversen and S. H. Snyder (Eds.), Handbook of Psychopharmacology, Vol. 4, Plenum, New York, 1975, pp. 1–58.Google Scholar
  59. 59.
    Tapia, R., Convulsions and the function of GABAergic synapses. In L. Battistin, G. Hashim and A. Lajtha (Eds.), Neurochemistry and Clinical Neurology, Alan R. Liss, New York, 1980, pp. 123–131.Google Scholar
  60. 60.
    Tapia, R. and Meza-Ruiz, G., Inhibition by ruthenium red of the calcium-dependent release of [3H] GABA in synaptosomal fractions, Brain Res., 126 (1977) 160–166.PubMedCrossRefGoogle Scholar
  61. 61.
    Tapia, R., Meza-Ruiz, G., Durgn L. and Drucker-Colin, R. R., Convulsions or flaccid paralysis induced by ruthenium red depending on route of administration, Brain Res., 116 (1976) 101–109.PubMedCrossRefGoogle Scholar
  62. 62.
    Tapia, R., Sandoval, M. E. and Contreras, P., Evidence for a role of glutamate decarboxylase activity as a regulatory mechanism of cerebral excitability., J. Neurochem., 24 (1975) 1283–1285.PubMedCrossRefGoogle Scholar
  63. 63.
    Weiss, G. B., Cellular pharmacology of lanthanum, Ann. Rev. Pharmacol., 14 (1974) 343–354.CrossRefGoogle Scholar
  64. 64.
    Wonnacott, S., Marchbanks, R. M. and Fiol, C., Ca2+ uptake by synaptosomes and its effect on the inhibition of acetylcholine release by botulinum toxin, J. Neurochem., 30 (1978) 1127–1134.PubMedCrossRefGoogle Scholar
  65. 65.
    Wood, J. D., The role of γ-aminobutyric acid in the mechanism of seizures, Progr. Neurobiol., 5 (1975) 77–95.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Ricardo Tapia
    • 1
  • Clorinda Arias
    • 1
  1. 1.Departamento de Neurociencias, Centro de Investigaciones en Fisiología CelularUniversidad Nacional Autónoma de MéxicoMéxico 20, D.F.Mexico

Personalised recommendations