Taurine as a Neuromodulator: Its Action on Calcium Fluxes and Neurotransmitter Release

  • Herminia Pasantes-Morales
  • Julio Morán


Taurine is an ubiquitous constituent of animal tissues (25); its highest levels are found in excitable organs like brain, heart and secretory glands, where it may reach concentrations as high as 20–100 mM (8,25,27). In spite of its wide distribution and of recent interest in studies on taurine, the elucidation of its functional role has been particularly difficult. Taurine is not associated to proteins and except for the formation of taurocholic acid it does not participate in metabolic reactions. Therefore, it could be thought that the presence of taurine in a tissue or organ should be related only to the specific function subserved by the amino acid. In this communication we will consider some possible roles of taurine in nervous tissue.


Taurine Level Taurine Concentration Taurine Release Free Amino Acid Pool 45Ca Accumulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, H. C., Davies, S. M. and Himwich, W. A. Postnatal changes in free amino acid pool of rat brain. J. Neurochem. 13 (1966) 607–615.Google Scholar
  2. 2.
    Agrawal, H. C., Davies, J. M. and Himwich, W. A. Postnatal changes in free amino acid pool of rabbit brain. Brain Res. 3 (1966) 374–380.CrossRefGoogle Scholar
  3. 3.
    Agrawal, H. C., Davison, A. N. and Kaczmarek, L. K. Subcellular distribution of taurine and cysteine sulfinate decarboxylase in developing rat brain. Biochem. J. 122 (1971) 759–763.PubMedGoogle Scholar
  4. 4.
    Barbeau, A. Zinc, taurine and epilepsy. Arch. Neurol. 30 (1974) 52–58.PubMedCrossRefGoogle Scholar
  5. 5.
    Bergamíni, L., Mutani, R., Delsedime, M. and Durelli, L. First clinical experience on the antiepileptic action of taurine. Eur. Neurol, 11 (1974) 261–269.PubMedCrossRefGoogle Scholar
  6. 6.
    Blaustein, M. P., Ratzlaff, R. W., Kendrick, N. C. and Schweitzer, E. S. Calcium buffering in presynaptic nerve terminals. I. Evidence for involvement of a nonmitochondrial ATP-dependent sequestration mechanism. J. Gen. Physiol., 72 (1977) 15–41.CrossRefGoogle Scholar
  7. 7.
    Clark, R. M. and Collins, G. G. S. The release of endogenous amino acids from the mammalian visual cortex. J. Physiol. (Lond.) 246 (1975) 16 P.Google Scholar
  8. 8.
    Crabai, F., Sitzia, A. and Pepen, G. Taurine concentration in the neurohypophysis of different animal species. J. Neurochem. 23 (1974) 1091–1092.PubMedCrossRefGoogle Scholar
  9. 9.
    Cutler, R. W. P. and Dudzinski, D. S. Regional changes in amino acid content in developing rat brain. J. Neurochem. 23 (1974) 1005–1009.CrossRefGoogle Scholar
  10. 10.
    Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R. and McLennan, H. Antagonism between bicuculline and GABA in the cat brain. Brain Res. 33 (1971) 57–73.PubMedCrossRefGoogle Scholar
  11. 11.
    Curtis, D. R., Hosli, L. and Johnston, G. A. R. A pharmacological study of the depression of spinal neurons by glycine and related amino acids. Exp. Brain Res. 6 (1968) 1–18.CrossRefGoogle Scholar
  12. 12.
    Curtis, D. R. and Johnston, G. A. R. Amino acid transmitters in mammalian nervous system. Ergebn. Physiol. 69 (1974) 97–188.PubMedGoogle Scholar
  13. 13.
    Curtis, D. R. and Tebgcis, A. K. Bicuculline and thalamic inhibition. Exp. Brain Res., 16 (1972) 210–218.PubMedCrossRefGoogle Scholar
  14. 14.
    Curtis, D. R. and Watkins, J. C. The excitation and depression of spinal neurons by structurally related amino acids. J. Neurochem. 6 (1960) 117–141.PubMedCrossRefGoogle Scholar
  15. 15.
    De Belleroche, J. J. and Bradford, H. F. Amino acids in synaptic vesicles from mammalian cerebral cortex: a reappraisal. J. Neurochem. 21 (1973) 441–451.PubMedCrossRefGoogle Scholar
  16. 16.
    Dolara, P., Agresti, A., Giotti, A. and Pasquini, G. Effect of taurine on calcium kinetics of guinea-pig heart. Eur. J. Pharmacol. 24 (1973) 352–358.Google Scholar
  17. 17.
    Durelli, L., Mutani, R., Delsedime, M., Quattrocolo, G., Buffa, C., Mazzarion, M. and Fumero, S. Electroencephalographic and biochemical study of the antiepileptic action of taurine administered by cortical superfusion. Exp. Neurol. 52 (1976) 30–30.PubMedCrossRefGoogle Scholar
  18. 18.
    Enna, S. J., Kuhar, M. and Snyder, S. H. Regional distribution of postsynaptic receptor binding for -aminobutyric acid (GABA) in monkey brain. Brain Res. 93 (1975) 168–175.PubMedCrossRefGoogle Scholar
  19. 19.
    Hajós, F. An improved method for the preparation of synaptosomal fractions of high purity, Brain Res. 93 (1975) 485–489.PubMedCrossRefGoogle Scholar
  20. 20.
    Hope, D. B. The persistence of taurine in the brains of pyridoxine-deficient rats. J. Neurochem. 1 (1957) 364–369.PubMedCrossRefGoogle Scholar
  21. 21.
    Hruska, R., Huxtable, R., Bressler, J. and Yamamura, H. R. Sodium-dependent high affinity transport of taurine into rat brain synaptosomes. Proc. West. Pharmacol. Soc. 19 (1976) 152–156.PubMedGoogle Scholar
  22. 22.
    Izumi, K., Igisu, H. and Fukuda, T. Effects of edetate on seizure supressing actions of taurine and GABA, Brain Res. 88 (1975) 576–579.PubMedCrossRefGoogle Scholar
  23. 23.
    Izumi, K., Igisu, H. and Fukuda, T. Supression of seizures by taurine -specific or nonspecific? Brain Res. 76 (1974) 171–173.PubMedCrossRefGoogle Scholar
  24. 24.
    Jasper, H. H. and Koyama, I. Rate of release of amino acids from the cerebral cortex in the cat as affected by brain stem and thalamic stimulation. Can. J. Physiol. Pharmacol. 47 (1969) 889–905.PubMedCrossRefGoogle Scholar
  25. 25.
    Jacobsen, J. G. and Smith, H. L. Biochemistry and physiology of taurine and taurine derivatives. Physiol. Rev. 48 (1968) 424–511.PubMedGoogle Scholar
  26. 26.
    Kaczmarek, L. K. and Davison, A. N. Uptake and release of taurine from rat brain slices. J. Neurochem. 19 (1972) 2355–2362.PubMedCrossRefGoogle Scholar
  27. 27.
    Kocsis, J. J., Kostos, U. J. and Baskin, S. I. Taurine levels in the heart tissues of various species. In: R. Huxtable and A. Barbeau (Eds.), Taurine, Raven Press, New York, 1976, pp. 145–153.Google Scholar
  28. 28.
    Kontro, P., Marnela, K. M. and Oja, S. S. Free amino acids in the synaptosome and synaptic vesicle fractions of different bovine brain areas. Brain Res. 184 (1980) 129–141.PubMedCrossRefGoogle Scholar
  29. 29.
    Kuriyama, K., Muramatsu, M., Nakagawa, K. and Kakita, K. Modulating role of taurine on release of neurotransmitters and calcium transport in excitable tissues. In: A. Barbeau and R. Huxtable (Eds.) Taurine and Neurological Disorders, Raven Press, New York, 1978, pp. 201–216.Google Scholar
  30. 30.
    Kuriyama, K., Yoneda, Y. and Kurihara, E. Microdistribution of taurine and cysteine sulfinate decarboxylase activity in rat spinal cord and thalamus: comparison with Y-aminobutyric acid and L-glutamic acid decarboxylase. In: A. Barbeau and R. Huxtable (Eds.) Taurine and Neurological Disorders, Raven Press, New York, (1978) pp. 35–48.Google Scholar
  31. 31.
    Landesmaki, P., Karppinen, A., Saarni, H. and Winter, R. Amino acids in the synaptic vesicle fraction from calf brain: content, uptake and metabolism. Brain Res. 138 (1977) 295–308.CrossRefGoogle Scholar
  32. 32.
    LeFauconnier, J. M., Urban, P. F. and Mandel, P. Taurine transport into the brain in rat. Biochimie 60 (1978) 381–387.PubMedCrossRefGoogle Scholar
  33. 33.
    Lipton, J. M. and Tickner, C. B. Central effect of taurine and its analogues on fever caused by intravenous leukocytic pyrogen in the rabbit. J. Physiol. (tond.) 287 (1979) 535–543.Google Scholar
  34. 34.
    López-Colomé, A. M. and Pasantes-Morales, H. Taurine interactions with chick retinal membranes. J. Neurochem 34 (1980) 1047–1053.Google Scholar
  35. 35.
    Mandel, P. and Pasantes-Morales, H. Taurine in the nervous tissue In: S. Ehrenpreis and I. Kopin (Eds.) Reviews in Neurosciences. Raven Press, New York. 1978, Vol. 3, pp. 157–194.Google Scholar
  36. 36.
    McBride, W. J. and Frederickson, R. C. A. Neurochemical and neurophysiological evidence for a role of taurine as an inhibitory neurotransmitter in the cerebellum of the rat. In: A. Barbeau and R. Huxtable (Eds.), Taurine and Neurological Disorders, Raven Press, New York, 1978, pp. 415–428.Google Scholar
  37. 37.
    Mutani, R., Bergamini, L., Fariello, R. and Delsedime, H. Effects of taurine on cortical acute epileptic foci, Brain Res., 70 (1974) 170–173.PubMedCrossRefGoogle Scholar
  38. 38.
    Pasantes-Morales, H., Bonaventure, N., Wioland, N. and Mandel, P. Effect of intravitreal injections of taurine and GABA on chicken ERG. Int. J. Neurosci. 5 (1973) 235–241.Google Scholar
  39. 39.
    Pasantes-Morales, H., Klethi, J., Urban, P. F. and Mandel, P. The effect of electrical stimulation, light and amino acids on the efflux of 35S-taurine from the retina of the domestic fowl. Exp. Brain Res., 19 (1974) 131–142.PubMedCrossRefGoogle Scholar
  40. 40.
    Schmid, R., Sieghart, W. and Karobath, M. Taurine uptake in synaptosomal fractions of rat cerebral cortex. J. Neurochem. 25 (1975) 5–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Sgaragli, G. P. and Pavan, F. Effects of neutral amino acids injected into cerebrospinal fluid space on glucose metabolism in the rat brain. Neuropharmacology 12 (1973) 653–661.PubMedCrossRefGoogle Scholar
  42. 42.
    Sgaragli, G. P., Magnani, M., Carla, U. and Giotti, A. Muscle relaxation induced in the rabbit by intracerebroventricular taurine injection: a supraspinal effect. Naunyn Schmied. Arch. Pharmacol . 295 (1976) 95–97.CrossRefGoogle Scholar
  43. 43.
    Sieghart, W. and Heckl, K. Potassium-evoked release of taurine from synaptosomal fractions of rat cerebral cortex. Brain Res. 116 (1976) 538–543.PubMedCrossRefGoogle Scholar
  44. 44.
    Snyder, S. H. The glycine synaptic receptor in the mammalian central nervous system. Br. J. Pharmacol. 53 (1975) 475–484.Google Scholar
  45. 45.
    Sturman, J. A. Taurine pool sizes in the rat: effects of vitamin-B6 deficiency and high taurine diet. J. Nutr. 103 (1973) 1566–1580.PubMedGoogle Scholar
  46. 46.
    Van Gelder, N. M., Sherwin, A. L. and Rasmussen, T. Amino acid content of epileptogenic human brain: focal versus surrounding regions. Brain Res. 40 (1972) 385–393.PubMedCrossRefGoogle Scholar
  47. 47.
    Van Gelder, N. M. Antagonism by taurine of cobalt induced epilepsy in cat and mouse. Brain Res. 47 (1972) 157–168.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Herminia Pasantes-Morales
    • 1
  • Julio Morán
    • 1
  1. 1.Departamento de Neurociencias Centro de Investigaciones en Fisiología CelularUniversidad Nacional Autónoma de MéxicoMéxico 20, D. F.Mexico

Personalised recommendations