Advertisement

Gabaergic Synapses: Distribution and Interaction with Other Neurotransmitter Systems in the Brain

  • M. Pérez de la Mora
  • K. Fuxe
  • T. Hökfelt
  • K. Andersson
  • L. Possani
  • R. Tapia

Abstract

Over the last years, a number of neuronal systems using a different kind of neurotransmitter have been identified in the brain. The GABA and dopamine (DA) neuronal systems, due to their biological peculiarities, have attracted a considerable attention (for references see 34,53,64). The DA systems are, from an anatomical point of view, very well defined. Several ascending DA-pathways originating in the ventral mid-brain tegmentum (areas A9 and A10 according to Dahlström and Fuxe (10) give rise to fibers which innervate the neostriatum (nigro-neostriatal DA pathway), subcortical limbic regions such as nucleus accumbens and tuberculum olfactorium, cortical limbic regions (mesolimbic DA pathways), and the frontal cortex (mesocortical DA pathway). In addition, intrahypothalamic DA pathways such as the tubero-infundibular pathway, which originates in the nuc. Arcuatus and the ventral part of the periventricular hypothalamic nucleus and innervates the external layer of the median eminence, have been described (3,18,21,63). From a functional point of view, the nigroneostriatal and the meso-accumbens DA pathway seem to be important for sensorimotor integration; the tubero-infundibular pathway participates in neuroendocrine regulation, while most of the mesolimbic DA systems and the mesofrontal DA pathway may instead have a role in the control of higher brain functions (for references see 34,64). The GABA system, consisting of both Golgi I and Golgi II type neurons, includes neuronal pathways which innervate all the regions of the brain (61). This is the major inhibitory system and might participate in the regulation of nearly all the functions of the central nervous system (CNS), directly and/or through its synaptic influence on other neurotransmitter systems (for references see 53).

Keywords

Substantia Nigra Glutamic Acid Decarboxylase Median Eminence Glutamate Decarboxylase Gaba System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andén, N.-F., Butcher, S.G., Corrodi, H., Fuxe, K. and Ungerstedt U., Receptor activity and turnover rate of dopamine and nor-adrenaline after neuroleptics, J. Pharmacol. 11 (1970) 303–314.Google Scholar
  2. 2.
    Andén, N.-E., Corrodi, H. and Fuxe, K. Turnover studies using synthesis inhibition, In: G. Hooper, (Ed.), Metabolism of Amines in The Brain, McMillan, London, 1969, pp. 38–47.Google Scholar
  3. 3.
    Andén, N.-E., Dahlström, A., Fuxe, K., Larsson, K., Olson, L. and Ungerstedt, U., Ascending monoamine neurons to the telencephalon and diencephalon, Acta physiol. scand, 67 (1966) 313–326.CrossRefGoogle Scholar
  4. 4.
    Andén, N.-E., Rubenson, A., Fuxe, K., Hökfelt, T., Evidence for dopamine receptor stimulation by apomorphine, J. Pharm. Pharmacol 19 (1967) 627–629.PubMedCrossRefGoogle Scholar
  5. 5.
    Andén, N.-E. and Wachtel, H. Some effects of GABA and GABA-like drugs on central catecholamine mechanisms. In S. Grattini, J.F. Pujol and R. Samanin (Eds.), Interactions Between Putative Neurotransmitters in the Brain, Raven Press, New York, 1978, pp. 161–174.Google Scholar
  6. 6.
    Barber, R. and Saito, K. Light Microscopic Visualization of GAD and GABA-T in Immunocytochemical Preparations of Rodent CNS. In E. Roberts, T.N. Chase and D.B. Tower (Eds.), GABA in Nervous System Function, Raven Press, New York. 1976, pp. 113–132.Google Scholar
  7. 7.
    Bartholini, G. Interaction of dopamine, acetilcholine, and (-aminobutyric acid in limbic and striatal structures: Relation to therapy of schizophrenia. In De Ajuriaguerra, J. and Tissot, R. (Eds.) Rhinencephale, Neurotransmetterus et Sychoses. Masson, Paris, 1977 pp. 241–251.Google Scholar
  8. 8.
    Brownstein, M., Palkovits, M., Tappaz, M., Saavedra, J. and Kizer, S., Effect of surgical isolation of the hypothalamus on its neurotransmitter content, Brain Res. 117 (1976) 287–295.PubMedCrossRefGoogle Scholar
  9. 9.
    Cuello, A.C. and Iversen, L.L. Interactions of dopamine with other neurotransmitters in the rat substantia nigra: A possible functional role of dendritic dopamine. In Grattini, S., Pujol. P.J. and Samanin, R. (Eds.) Interactions Between Putative Neurotransmitters in the Brain Raven Press, New York, 1978, pp. 127149.Google Scholar
  10. 10.
    Dahlstrom, A. and Fuxe, K., Evidence for the existence of monoamine containing neurons in the central nervous system. I, Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand, 62, Suppl. 232 (1964) 1–55.Google Scholar
  11. 11.
    Eccles, J.C., Ito, M. and Szentagothai, J., The Cerebellum as a Neural Machine. Springer-Verlag, New York, 1967.Google Scholar
  12. 12.
    Einarsson, P., Hallman, P. and Jonsson, G., Quantitative microfluorimetry of formaldehyde-induced fluorescence of dopamine in the caudate nucleus. Med. Biol 53 (1975) 15–24.PubMedGoogle Scholar
  13. 13.
    Fonnum, F., Grofovg, I., Rinvik, E., Storm-Mathisen, J. and Walberg. F., Origin and distribution of glutamate decarboxylase in substantia nigra of the cat, Brain Res, 71 (1974) 77–92.PubMedCrossRefGoogle Scholar
  14. 14.
    Fonnum, F., Storm-Mathisen, J. and Walberg, F., Glutamate decarboxylase in inhibitory neurons. A study of the enzyme in Purkinje cell axons and boutons in the cat Brain Res, 20 (1970) 259–275.PubMedCrossRefGoogle Scholar
  15. 15.
    Fonnum, F., Walaas, I. and Iversen, E. Localization of gabaergic, cholinergic and aminergic structures in the mesolimbic system, J. Neurochem, 29 (1977) 221–230.PubMedCrossRefGoogle Scholar
  16. 16.
    Fuxe, K., Andersson K., Ogren S-0, Pérez de la Mora M., Schwarcz R., Hökfelt T., Eneroth P., Gustafsson J-A Skett P., GABA neurons and their interaction with monoamine neurons. An anatomical, pharmacological and functional analysis. In P. Krogsgaard-Larsen, J. Scheel-Kruger and H. Kofod (Eds.) GABA Neurotransmitters. Pharmacological, Biochemical and Pharmacological Aspects, Munksgaard, Copenhagen, 1979, pp. 74–94.Google Scholar
  17. 17.
    Fuxe, K., Andersson, K., Schwarcz, R., Agnati, L.F., Pérez de la Mora, M. Hökfelt, T., Goldstein M., Ferland, L., Possaní, L. and Tapia, R., Studies on different types of dopamine nerve terminals in the forebrain and their possible interactions with hormones and with neurons containing GABA, glutamate and opioid peptides, In L.J. Poirier, T.L. Sourkes and P.J. Bedard (Eds.), Advances in Neurology, Vol. 24, Raven Press, New York, 1979, pp. 199–216.Google Scholar
  18. 18.
    Fuxe, K., Hökfelt, T., Agnati, L.F., Johansson, 0., Goldstein, M., Pérez de la Mora, M., Possani, L., Tapia, R., Tergn, L. and Palacios, R. Mapping out central catecholamine neurons: Immunohistochemical studies on catecholamine-synthesizing enzymes. In M.A. Lipton, A. Di Mascio and K.F. Killam (Eds.), Psycho-pharmacology. A Generation of Progress, Raven Press, New York, 1978, pp. 67–94.Google Scholar
  19. 19.
    Fuxe, K., Hökfelt, T., Agnati, L., Ljungdahl, A., Johansson, 0. and Pérez de la Mora, M., Evidence for an inhibitory gabaergic control of the mesolimbic dopamine neurons: possibility of improving treatment of schizophrenia by combined treatment with neuroleptics and gabergic drugs, Med. Biol, 53 (1975) 177–183.PubMedGoogle Scholar
  20. 20.
    Fuxe, K., Hökfelt, T., Johansson, 0., Ganten, D., Goldstein, M., Pérez de la Mora, M., Possani, L., Tapia, R., Tergn, L., Palacios, R., Said, S. & Mutt, V. Monoamine neuron system in the hypothalamus and their relation to the GABA and peptide-containing neurons. In Mornex, R. and Barry, J. Neuromediateurs et Polypeptides Hypothalamiques a Action Relachante ou Inhibitrice, Institut National de la Sante et de la Recherche Medicale, Paris, 1977, pp. 17–40.Google Scholar
  21. 21.
    Fuxe, K., Hökfelt, T. and Ungerstedt, U., Morphological and functional aspects of central monoamine neurons. In International Review of Neurobiology, Vol. 13, Academic Press, New York. 1970, pp. 93–126.Google Scholar
  22. 22.
    Fuxe, K., Ogren, S.-0., Fredholm, B., Agnati, L., Hökfelt, T. and Pérez de la Mora, M., Possibilities of a differential blockade of central monoamine receptors. In De Ajuriaguerra, J. and Tissot, R. (Eds.) Rhinencéphale Neurotransmetteurs et Sychoses Masson, Paris, 1977, pp. 253–289.Google Scholar
  23. 23.
    Fuxe, K., Pérez de la Mora, M., Hökfelt, T., Agnati, L., Ljungdahl, A., and Johansson, 0. GABA-DA interactions and their possible relation to schizophrenia. In C. Shagaas, S. Gershon and A.J. Friedhof (Eds.) Psychopathology and Brain Dysfunction Raven Press, New York, 1977, pp. 97–111.Google Scholar
  24. 24.
    Hökfelt, T., Elde, R., Fuxe, K., Johansson, 0., Ljungdahl, A. Goldstein, M., Luft, R., Efendic, S., Nilsson, G., Terenius, L., Ganten, D., Jeffcoate, S.L., Rehfeld, J., Said, S., Pérez de la Mora, M., Possani, L., Tapia, R., Tergn, L. and Palacios, R. Aminergic and peptidergic pathways in the nervous system with special reference to the hypothalamus. In S. Reichlin, R.J. Baldessarini and J.B. Martin (Eds.), The Hypothalamus, Raven Press, New York, 1978, pp. 69–135.Google Scholar
  25. 25.
    Hökfelt, T. and Ljungdahl, A. Uptake mechanisms as a basis for the histochemical identifie ation and tracing of transmitter specific neuron populations, In W.M. Cotman and M. Cuénod (Eds.), The Use of Axonal Transport for Studies of Neuronal Connectivity, Elsevier Scientific Publishing Co., Amsterdam, 1975, pp. 251–305.Google Scholar
  26. 26.
    Iversen, L.L. and Schon, F. The use of autoradiographie techniques for the identification and mapping of transmitter specific neurons in CNS. In A. Mandel and D. Segal (Eds.) New Concepts of Transmitter Regulation Plenum Press, New York, 1973, pp. 153–193.Google Scholar
  27. 27.
    Javoy, F., Agid, Y. and Glowinski, J., Oxotremorine and atropine-induced changes of dopamine metabolism in the rat striatum. J. Pharm. Pharmacol 27 (1975) 677–681.PubMedCrossRefGoogle Scholar
  28. 28.
    Johnston, G.A.R. Physiologic pharmacology of GABA and its antagonists in the vertebrate nervous system. In Roberts, E. Chase, T.N. and Tower, D.B. (Eds.) GABA in Nervous System Function, Raven Press, New York, 1976, pp. 395–411.Google Scholar
  29. 29.
    Joseph-Nathan, P., Massieu, G., Carvajal, P. and Tapia, R., y-Hydroxy-y-Phenyl, Caproamide, an anticonvulsant molecule, Rev. Latinoamer. Quím 9 (1978) 90–92.Google Scholar
  30. 30.
    Kim, J.S., Bak, I.J., Hassler, R. and Okada, Y., Role of y-aminobutyric acid (GABA) in the extrapyramidal motor system. 2. Some evidence for the existence of a type of GABA-rich strionigral neurons, Exp. Brain Res, 14 (1971) 95–104.PubMedCrossRefGoogle Scholar
  31. 31.
    Krogsgaard-Larsen, P., Johnston, G.A.R., Curtis, D.R., Game, C.J.A., and McCulloch, R.M., Structure and biological activity of a series of conformotionally restricted analogues of GABA, J. Neurochem. 25 (1975) 203–209.Google Scholar
  32. 32.
    Ladinsky, H., Consolo, S., Bianchi, S. and Jori, A., Increase in striatal acetylcholine by picrotoxin in the rat: evidence of a gabaergic-dopaminergic-cholinergic link, Brain Research, 108 (1976) 351–361.PubMedCrossRefGoogle Scholar
  33. 33.
    Lasher, R.S., The Uptake of (3H) GABA and differentiation of stellate neurons in cultures of dissociated postnatal rat cerebellum, Brain Res. 69 (1974) 235–254.PubMedCrossRefGoogle Scholar
  34. 34.
    Lipton, M.A., DiMascio, A. and Killam, K.F. (Eds.), Psycho-pharmacology: A Generation of Progress, Raven Press, New York, 1978.Google Scholar
  35. 35.
    Mao, C.C., Cheney, D.L., Marco, E., Revuelta, A. and Costa, E. Turnover times of gamma-aminobutyric acid and acetylcholine in nucleus caudatus, nucleus accumbens, globus pallidus and substantia nigra: Effects of repeated administration of haloperidol, Brain Res. 132 (1977) 375–379.PubMedCrossRefGoogle Scholar
  36. 36.
    Mao, C.C., Marco, E., Revuelta,A. and Costa, E., Antysychotics and GABA turnover in mammalian brain nuclei. In Grattini, S., Pujol, J.F. and Samanin, R. (Eds.), Interactions Between Putative Neurotransmitters in the Brain, Raven Press, New York, 1978, pp. 151–160.Google Scholar
  37. 37.
    Massieu, G.H., Tapia, R., Pasantes, H.O. and Ortega, B.G. Convulsant effect of L-glutamic acid-y-hydrazide by simultaneous treatment with pyridoxal phosphate, Biochem. Pharmacol 13 (1964) 118–120.PubMedCrossRefGoogle Scholar
  38. 38.
    Matsuda, T., Wu, J.-Y. and Roberts, E., Immunochemical studies on glutamic acid decarboxylase (EC 4.1.1.15) from mouse brain, J. Neurochem. 21 (1977) 159–166.CrossRefGoogle Scholar
  39. 39.
    Matsuda, T., Wu, J.-Y. and Roberts, E., Electrophoresis of glutamic acid decarboxylase (EC 4.1.1.15) from mouse brain in sodium dodecyl sulphate polyacrylamide gels, J. Neurochem, 21 (1973) 167–172.PubMedCrossRefGoogle Scholar
  40. 40.
    McGeer, P.L., Fibiger, H.C., Maler, M., Hattori, T. and McGeer E.G., Evidence for descending pallido-nigral GABA-containing neurons. In F. MacDowell and A. Barbeau (Eds.), Advances in Neurology, Vol. 3, Raven Press, New York, 1974, pp. 153–163.Google Scholar
  41. 41.
    Obata, K. Ito, M., Ochi, R. and Sato, N. Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of y-aminobutyric acid on Deiters neurons, Exp. Brain Res 4 (1967) 43–57.PubMedCrossRefGoogle Scholar
  42. 42.
    Pérez de la Mora, M. and Fuxe, K. Brain GABA, dopamine and acetylcholine interactions. I. Studies with oxotremorine, Brain Res, 135 (1977) 107–122.CrossRefGoogle Scholar
  43. 43.
    Pérez de la Mora, M., Fuxe, K., Andersson, K., Hökfelt, T., Ljungdahl, A. Possani, L. and Tapia, R. Studies on GABA-monoamine and GABA-endorphin interactions. In E. Usdin, I.J. Kopin and J. Barchas (Eds.), Catecholamines: Basic and Clinical Frontiers, Pergamon Press, New York, 1979, Vol. II, pp. 1032–1034.Google Scholar
  44. 44.
    Pérez de la Mora, M., Fuxe, K., Hökfelt, T. and Ljungdahl, A. Effect of apomorphine on the GABA turnover in the DA cell group rich area of the mesencephalon. Evidence for the involvement of an inhibitory gabergic feedback control of the ascending DA neurons, Neurosci. Lett, 1 (1975) 109–114.CrossRefGoogle Scholar
  45. 45.
    Pérez de la Mora, M., rune, K-; Hökfelt, T. and Ljungdahl, A. Further evidence that apomorphine increases GABA turnoveL in the cell body rich and DA nerve terminal rich areas of the brain, Neurosci. Lett 2 (1976) 239–241.CrossRefGoogle Scholar
  46. 46.
    Pérez de la Mora, M., Fuxe, K. Hökfelt, T. and Ljungdahl, A. Evidence for a nerve impulse-dependent GABA accumulation in the substantía nígra after treatment with y-glutamylhydrazide, Neurosci. Lett. 5 (1977) 75–82.Google Scholar
  47. 47.
    Pérez de la Mora, M., and Tapia, R. Anticonvulsant effect of 5-ethyl, 5-phenyl, 2-pirrolidinone and its possible relationship to y-aminobutyric acid-dependent inhibitory mechanisms, Bíochem. Pharmacol 22 (1973) 2635–2639.PubMedCrossRefGoogle Scholar
  48. 48.
    Possani, L.D., Bayón, A. and Tapia, R., Synthesis of affinity chromatographic resins for the purification of brain glutamate decarboxylase, Neurochem. Res. 2 (1977) 51–57.Google Scholar
  49. 49.
    Racagni, G., Apud, J.A., Locatelli, V. Cocchi, D., Nistico, G. di Giorgio, R.M. and Muller, E. E. GABA of CNS origin in the rat anterior pituitary inhibits prolactín secretion. Nature (Lond.) 281 (1979) 575–578.Google Scholar
  50. 50.
    Racagni, G. Bruno. Interactions among dopamine, acetylcholine, and GABA in the nigrostriatal system, In: Grattiní, S. Pujol, J.F. and Samanin, R. (Eds.) Interactions Between Putative Neurotransmitters in the Brain, Raven Press, New York, 1978, pp. 61–72.Google Scholar
  51. 51.
    Reubi, J.C., Iversen, L.L. and Jessel, T.M. Dopamine selectively increases 3H-GABA release from slices of rat substantía nigra in vitro, Nature 268 (1977) 652–653.CrossRefGoogle Scholar
  52. 52.
    Ribak, C.E., Vaughn, J.E., Saito, K., Barber, R. and Roberts, E., Immunocytochemical localization of glutamate decarboxylase in rat substantia nigra, Brain Res. 116 (1976) 287–298.PubMedCrossRefGoogle Scholar
  53. 53.
    Roberts, E., Chase, T.N. and Tower, D.B. (Eds.), GABA in Nervous System Function, Raven Press, New York, 1976.Google Scholar
  54. 54.
    Saito, K., Barber, R., Wu, J-Y., Matsuda, T., Roberts, E. and Vaughn, J.E., Immunohistochemical localization of glutamate decarboxylase in rat cerebellum, Proc. Nat. Acad. Sci. USA, 71 (1974) 269–273.PubMedCrossRefGoogle Scholar
  55. 55.
    Saito, K. Wu, J.-Y., Matsuda, T. and Roberts, E. Immunochemical comparisons of vertebrate glutamic acid decarboxylase, Brain Res 65 (1974) 277–285.Google Scholar
  56. 56.
    Schechter, P., Tranier Y., Jung, M.J. and Bohlen, P. Audiogenic seizure protection by elevated brain GABA concentration in mice: Effects of Y-acetylenic GABA and Y-vinyl GABA, two irreversible GABA-T inhibitors. Europ. J. Pharmacol 45 (1977) 319–328.CrossRefGoogle Scholar
  57. 57.
    Scheel-Kruger, J., Arnt, J., Braestrup, C., Christensen, A.V. and Mageluno, E., Development of new animal models for GABAergic actions using muscimol as a tool. In P. Krogsgaard-Larsen, J. Scheel-Kruger and H. Kofod (Eds.), GABA-Neurotransmitters, Pharmacochemical, Biochemica l and Pharmacological Aspects, Munksgaard, Copenhagen, 1979, pp. 447–464.Google Scholar
  58. 58.
    Sotelo, C. Privat, A. and Drian, M.-J. Localization of (3H) GABA in tissue culture of rat cerebellum using electron microscopy radioautography, Brain Res, 61 (1972) 379–384.Google Scholar
  59. 59.
    Tapia, R., Biochemical Pharmacology of GABA in CNS In: Iversen L.L., Iversen, S.D. and Snyder, S.H. (Eds.) Handbook of Psychopharmacology Vol. 4. Plenum Publishing Co., New York, 1975, pp. 1–58Google Scholar
  60. 60.
    Tapia, R., Drucker-Colin, R.R., Meza-Ruiz, G., Duran, L. and Levi G. Neurophysiological and neurochemical studies on the action of the anticonvulsant Y-hydroxy, Y-ethyl, Y-phenyl-butyramide, Epilepsia 20 (1979) 135–145.CrossRefGoogle Scholar
  61. 61.
    Tappaz, M.L., Brownstein, M.J. and Palkovits, M., Distribution of glutamate decarboxylase in discrete brain nuclei, Brain Res. 108 (1976) 371–380.PubMedCrossRefGoogle Scholar
  62. 62.
    Tappaz, M.L. and Brownstein, M.J., Origin of glutamate decarboxylase (GAD) containing cells in discrete hypothalamic nuclei, Brain Res. 132 (1977) 95–106.PubMedCrossRefGoogle Scholar
  63. 63.
    Ungerstedt, U. Stereotaxic mapping of the monoamine pathway in the rat brain. Acta physiol. scand, 82 (1971) 1–48.CrossRefGoogle Scholar
  64. 64.
    Usdin, E., Kopin, I.J. and Barchas J. (Eds.), Catecholamines: Basic and Clinical Frontiers. Pergamon Press, New York, 1979.Google Scholar
  65. 65.
    Walaas, I. and Fonnum, F. The effect of parenteral glutamate treatment on the localization of neurotransmitters in the mediobasal hypothalamus, Brain Res, 153 (1978) 549–562.PubMedCrossRefGoogle Scholar
  66. 66.
    Waalas, I. and Fonnum, F., The distribution and origin of glutamate decarboxylase and choline acetyltransferase in ventral pallidum and other basal forebrain regions, Brain Res. 117 (1979) 325–336.CrossRefGoogle Scholar
  67. 67.
    Wiesel, F.A. and Seduall, G. The effect of antipsychotic drugs on homovanillic acid levels in striatum and olfactory tubercle of the rat, Europ. J. Pharmacol 30 (1975) 364–367.CrossRefGoogle Scholar
  68. 68.
    Wood, J.G. McLaughlin, B.J. and Vaughn, J.E. Immunocytochemical localization of GAD in electron microscopic preparations of rodent CNS. In E. Roberts, T.N. Chase and D.B. Tower (Eds.), GABA in Nervous System Function, Raven Press, New York, 1976, pp. 133–148.Google Scholar
  69. 69.
    Yoshida, M. and Precht, W., Monosynaptic inhibition of neurons of the substantia nigra by caudate-nigral fibers, Brain Res. 32 (1971) 225–228.PubMedCrossRefGoogle Scholar
  70. 70.
    Wochwa, S., Immunoelectrophoresis (including zone electrophoresis), In N.R. Rose and H. Friedman (Eds.), Manual of Clinical Immunology, American Society for Microbiology, Washington, D.C. 1976, pp. 17–35.Google Scholar
  71. 71.
    Wu, J.-Y., Matsuda, T. and Roberts, E., Purification and characterization of glutamate decarboxylase from mouse brain, J. Biol. Chem 248 (1973) 3029–3034.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • M. Pérez de la Mora
    • 1
  • K. Fuxe
    • 2
  • T. Hökfelt
    • 2
  • K. Andersson
    • 2
  • L. Possani
    • 1
  • R. Tapia
    • 1
  1. 1.Departamento de Neurociencias, Centro de Investigaciones en Fisiología CelularUniversidad Nacional Autónoma de MéxicoMéxico 20, D.F.Mexico
  2. 2.Department of HistologyKarolinska InstituteStockholmSweden

Personalised recommendations