Advertisement

Glutamergic Neurons: Localization and Release of the Transmitter

  • F. Fonnum
  • D. Malthe-Sørenssen
  • I. Kvale
  • A. Søreide
  • K. K. Skrede
  • I. Walaas

Abstract

Studies have accumulated showing that amino acids may constitute the group of neurotransmitters which dominate quantitatively in the mammalian brain (5,6,10,26,27). Glutamate is the most important candidate as an excitatory neurotransmitter. But it has several other important functions to fulfill and the problem is therefore to locate the transmitter pool of glutamate. By analogy to other amino acids and amines that function as neurotransmitters, this pool can be identified by three methods:
  1. 1)

    High affinity uptake process.

     
  2. 2)

    Ca++ dependent release on depolarization of brain slices or synaptosomes.

     
  3. 3)

    A high intraterminal localization.

     

Keywords

Nucleus Accumbens Superior Colliculus Lateral Septum Lateral Geniculate Body Diagonal Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen, P., Bland, B.H. and Dudar, J.D., Organization of the hippocampal output, Expl. Brain Res., 17 (1973) 152–168.CrossRefGoogle Scholar
  2. 2.
    Balcar, I.J. and Johnston, G.A.R., The structural specificity of the high affinity uptake of L-glutamate and L-aspartate by rat brain slices, J. Neurochem., 19 (1972) 2657–66.PubMedCrossRefGoogle Scholar
  3. 3.
    Bunny, B.S. and Aghajanian, G.K., The precise localization of nigral afferents in the rat as determined by a retrograde training technique, Brain Res., 117 (1976) 423–435.CrossRefGoogle Scholar
  4. 4.
    Carman, J.B., Cowan, W.M., Powell, T.P.S. and Webster, K.E., A bilateral cortico-striate projection, J. Neurol. Neurosurg. Psychiat., 28 (1965) 71–77.PubMedCrossRefGoogle Scholar
  5. 5.
    Curtis, D.R. and Johnston, G.A.R., Amino acid transmitters in the mammalian central nervous system, Ergebn. Physiol., 69 (1974) 94–188.Google Scholar
  6. 6.
    Curtis, D.R., Problems in the evaluation of glutamate as a central nervous system transmitter. In ( Filer Jr, L.J., Garattini, S., Kane, M.K., Reynolds, W.A. and Wurtman, R.J., Eds.), Glutamic Acíd. Advances in Biochemistry and Physiology, Raven Press, New York (1979), pp. 163–176.Google Scholar
  7. 7.
    Davis, L.P. and Johnston, G.A.R., Uptake and release of D- and L-aspartate by rat brain slices, J. Neurochem., 26 (1976) 1007–1014.CrossRefGoogle Scholar
  8. 8.
    Divac, I., Fonnum, F. and Storm-fathisen, J., High affinity uptake of glutamate in terminals of cortico-striatal axons, Nature (Lond.), 266 (1977) 377–378.CrossRefGoogle Scholar
  9. 9.
    Fonnum, F. and Walberg, F., An estimation of the concentration of γ-aminobutyric acid and glutamate decarboxylase in the inhibitory Purkinje axon terminals in the cat, Brain Res, 54 (1973) 115–128.PubMedCrossRefGoogle Scholar
  10. 10.
    Fonnum, F., Ed., Amino Acids as Chemical Transmitters, NATO Advances Study Series, Series A, Life Sciences, 16 (1978) Plenum Press,, New York.Google Scholar
  11. 11.
    Fonnum, F. and Walaas, I., The effect of intrahippocampal kainic acid injections and surgical lesions on neurotransmitters in hippocampus and septum, J. Neurochem., 31 (1978) 1173–1181.PubMedCrossRefGoogle Scholar
  12. 12.
    Fonnum, F., Lund Karlsen, R., Malthe-Sorenssen, D., Skrede, K.K. and Walaas, I., Localization of neurotransmitters, particularly glutamate in hippocampus, septum, nucleus accumbens and superior collículus, Progr. Brain Res., 51 (1979) 167–191.CrossRefGoogle Scholar
  13. 13.
    Fonnum, F., Storm-Mathísen, J. and Dívac, I., Biochemical evidence for glutamate as neurotransmitter in cortico-striatal and cortico-thalamic fibres in rat brain, Brain Res., in press.Google Scholar
  14. 14.
    Goldman, P.S. and Nauta, H.J.F., An intricately patterned prefronto-caudale projection in the rhesus monkey, J. Comp. Neurol., 171 (1977) 369–385.CrossRefGoogle Scholar
  15. 15.
    Hattori, T., Fibiger, H.C., McGeer, P.L., Demonstration of a pallídonigral projection innervating dopaminergic neurons, J. Comp. Neurol., 62 (1975) 487–504.CrossRefGoogle Scholar
  16. 16.
    Henn, F.A. and Hamberger, A., Glial cell function: Uptake of transmitter substances, Proc. Natl. Acad. Sci. USA, 68 (1971) 2686–2690.PubMedCrossRefGoogle Scholar
  17. 17.
    Hertz, L., Bock, E. and Schousboe, A., Developmental Neurobiol. (1980), in press.Google Scholar
  18. 18.
    Hubbard, J. I., Mills, R.G. and Sirett, N.E., Responses in the diagonal band of Broca evoked by stimulation of the fornix in the cat, J. Physiol. (Lond.), 292 (1979) 233–249.Google Scholar
  19. 19.
    Heisli, I. and H‘sli, E., Action and uptake of neurotransmitters in CNS, Tissue Culture Rev. Physiol. Biochem. Pharmacol., 81 (1978) 135–188.CrossRefGoogle Scholar
  20. 20.
    Iversen, L.L. and Bloom, F.E., Studies of the uptake of [3H] GABA and [3H] glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography, Brain Res, 41 (1972) 131–143.PubMedCrossRefGoogle Scholar
  21. 21.
    Iversen, L.L. and Schon, F.E., The use of autoradiographie techniques for the identification and napping of transmitter-specific neurons in CNS. In ( A.M. Mandell, Ed.), New Concepts in Neurotransmitter Regulation, Plenum Press, New York (1973), pp. 153–193.CrossRefGoogle Scholar
  22. 22.
    Kemp, J.M. and Powell, T.P.S., The cortico-striate projections in the monkey, Brain, 93 (1970) 525–546.PubMedCrossRefGoogle Scholar
  23. 23.
    Kim, J-S., Hassler, R., Haug, P. and Paik, K-S., Effect of frontal cortex ablation on striatal glutamic acid level in rat, Brain Res. 132 (1977) 370–374.PubMedCrossRefGoogle Scholar
  24. 24.
    Knigge, K.M. and Hayes, M., Evidence of inhibitive role of hippocampus on neural regulation of ACTH release, Proc. Soc. Exp. Biol. N.Y., 114 (1963) 67–69.Google Scholar
  25. 25.
    Kvale, I. and Fonnum, F., Development of neurotransmitter parameters in lateral genículate body, superior colliculus and visual cortex of the rat, Neuroscience, in press.Google Scholar
  26. 26.
    Logan, W.J. and Snyder, S.H., Unique high affinity uptake systems for glycine, glutamic and aspartic acids in central nervous tissue of the rat, Nature (Lond.), 234 (1971) 297–299.CrossRefGoogle Scholar
  27. 27.
    Lorente de No, R., Studies on the cerebral cortex-II. Continuation of the study of the Ammonic system, J. Psychol. Neurol. (Lpz), 46 (1934) 113–177.Google Scholar
  28. 28.
    Lund-Karlsen, R. and Fonnum, F., Evidence for glutamate as a neurotransmitter in the corticofugal fibres to the dorsal lateral geniculate body and superior colliculus in rats, Brain Res, 151 (1978) 457–467.CrossRefGoogle Scholar
  29. 29.
    Lund-Karlsen, R., Neurotransmitters in the mammalian visual system. In ( F. Fonnum, Ed.), Amino Acids as Chemical Transmitters, Plenum Press, New York (1978), pp. 241–256.Google Scholar
  30. 30.
    Malthe-Srenssen, D., Skrede, K.K. and Fonnum, F., Release of D- [3HT] aspartate from dorsolateral septum after electrical stimulation of the fimbría in vitro, Neuroscience, 5 (1980) 127–133CrossRefGoogle Scholar
  31. 31.
    Malthe-SOrenssen, D., Skrede, K.K. and Fonnum, F., Calcium dependent release of D- [3H]-aspartate evoked by selective electrical stimulation of excitatory afferent fibres to hippocampal pyramidal cells in vitro, Neuroscience, 4 (1979) 1255–1265.PubMedCrossRefGoogle Scholar
  32. 32.
    Meíbach, R.C. and Siegel, A., Efferent connections of the hippocampal formation in the rat, Brain Res, 124 (1977) 197–224.PubMedCrossRefGoogle Scholar
  33. 33.
    McGeer, P.L., McGeer, E.G., Scherer, V. and Singh, K., A glutamergic cortico-striatal path, Brain Res., 128 (1977) 369–373.CrossRefGoogle Scholar
  34. 34.
    Nagy, J.I., Carter, D.A. and Fibiger, H.C., Anterior striatal projections to the globus pallidus, entopduncular nucleus and substantia nigra in the rat: The GABA connection, Brain Res, 158 (1978) 15–29.PubMedCrossRefGoogle Scholar
  35. 35.
    Olney, J.W., Excitotoxic amino acids: Research application and safety implications. In(Filer Jr, L.J., S. Garattíni, H.R. Kane, W.A. Reynolds and K.J. Wurtman Eds.), Glutamic Acid. Advances inBiochemistry and Physiology, Raven Press, New York (1979), pp. 287 320.Google Scholar
  36. 36.
    Reisman, G., Cowan, W.M. and Powell, T.P.S., An experimental analysis of the efferent projection of the hippocampus, Brain Res, 89 (1966) 83–108.Google Scholar
  37. 37.
    Rinvik, E., The cortico-nigral projections in the cat, J. Comp. Neurol., 126 (1966) 241–254.PubMedCrossRefGoogle Scholar
  38. 38.
    Schon, F. and Kelly, J.S., Autoradiographic localization of [3H] -GABA and [3H–3 -glutamate over satellite glial cells, Brain Res, 66 (1974) 275–288.CrossRefGoogle Scholar
  39. 39.
    Skrede, K.K. and Westgaard, R., The transverse hippocampal slice: a well-defined cortical structure maintained in vitro, Brain Res, 35 (1971) 589–593.PubMedCrossRefGoogle Scholar
  40. 40.
    Spencer, H.J., Antagonism of cortical excitation of striatal neurons by glutamic acid diethylester: Evidence for glutamic acid as an excitatory transmitter in the rat striatum, Brain Res, 102 (1976) 91–101.PubMedCrossRefGoogle Scholar
  41. 41.
    Storm-Mathisen, J., Glutamic acid and excitatory nerve endings: reduction of glutamic acid uptake after axotomy, Brain Res, 120 (1977) 379–386.PubMedCrossRefGoogle Scholar
  42. 42.
    Storm, Mathisen, J. and Iversen, L.L., Uptake of CH] - glutamic acid in excitatory nerve endings. Light and electronmícroscopic observations in the hippocampal formation of the rat, Neuroscience, 4 (1979) 1237–1253.CrossRefGoogle Scholar
  43. 43.
    Storm-Mathisen, J. and Woxen-Opsahl, M., Aspartate and/or glutamate may be transmitters in hippocampal efferents to septum and hypothalamus, Neurosci. Lett., 9 (1978) 65–70.PubMedCrossRefGoogle Scholar
  44. 44.
    Swanson, L.W., An autoradiographic analysis of the efferent connections of the preoptic region in the rat, J. Comp. Neurol., 167 (1976) 227–256.PubMedCrossRefGoogle Scholar
  45. 45.
    Swanson, L.W. and Cowan, W.M., Autoradíographic studies of the development and connections of the septal area in the rat brain. In ( J. De France, Ed.), The Septal Nuclei, Plenum Press, New York (1976).Google Scholar
  46. 46.
    Swanson, L.W. and Cowan, W.M., An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat, J. Comp. Neurol., 172 (1977) 49–84.PubMedCrossRefGoogle Scholar
  47. 47.
    SOreide, A. and Fonnum, F., High affinity uptake of D- [3H]aspartate in the barrel subfield of the mouse somatic sensory cortex. Brain Res., in press.Google Scholar
  48. 48.
    Takagaki, G., Properties of the accumulation of D–14C aspartate into rat cerebral crude synaptosomal fraction. In ( F. Fonnum, Ed.), Amino Acids as Chemical Transmitters, Plenum Press, New York (1978), pp. 357–362.Google Scholar
  49. 49.
    Taxt, T. and Storm-Mathisen, J., Tentative localization of glutamergic and aspartergic nerve endings in brain, J. Physiol. (Paris), in press.Google Scholar
  50. 50.
    Velasco, M.E. and Taleisnik, S., Effect of hippocampal stimulation of the release of gonadotropin, Endrocrinology, 85 (1969) 1154–1159.CrossRefGoogle Scholar
  51. 51.
    Walaas, I., The localization of neurons probably using amino acids as transmitters, Ph. D. Thesis, in press.Google Scholar
  52. 52.
    Walaas, I. and Fonnum, F., Biochemical evidence for glutamate as a transmitter in hippocampal efferents to the basal forebrain and hypothalamus in rat brain, Neuroscience, in press.Google Scholar
  53. 53.
    Wieraszko, A. and Lynch, G., Stimulation dependent release of possible transmitter substances from hippocampal slices studied with localized perfusion, Brain Res, 160 (1979) 372–376.PubMedCrossRefGoogle Scholar
  54. 54.
    Woolsey, T.A. and van der Loos, H., The structural organization of layer IV in the somatic sensory region of mouse cerebral cortex: the description of a cortical field composed of discrete cytoarchitectonic units, Brain Res, 17 (1970) 205–242.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • F. Fonnum
    • 1
  • D. Malthe-Sørenssen
    • 1
  • I. Kvale
    • 1
  • A. Søreide
    • 1
  • K. K. Skrede
    • 1
  • I. Walaas
    • 1
  1. 1.Division for ToxicologyNorwegian Defence Research EstablishmentKjellerNorway

Personalised recommendations