Synaptic Changes Induced by Optic Chiasm Low Intensity Repetitive Electrical Stimulation (The Kindling Effect)

  • A. Fernández-Guardiola
  • M. Condés-Lara
  • J. M. Calvo


The kindling effect has been defined as a relatively permanent alteration in brain function which results from repeated electrical stimulation and culminates in the appearance of electrographic and behavioral convulsions (9). Kindling has been considered as a model for learning, long term memory, and plasticity (16). Many brain regions are unresponsive to the kindling effect, specifically the majority of the neocortex, the thalamus and the brain stem. The most responsive regions are parts of the limbic system. As Goddard et al. (9) pointed out, kindling can be produced by electrically stimulating bundles such as the stria terminalis, the fornix, the fimbria, the corpus callosum and the anterior commissure. Recently, Cain (4) observed that the repeated stimulation of visual and auditory thalamic relay nuclei induced partially or fully generalized seizures in some animals. Later Cain (5) compared the kindling response of hippocampus and dentate gyrus with the kindling response of lateral and medial geniculate nuclei. While between 31% and 44% of the animals with thalamic stimulation developed generalized convulsions, 100% of the animals displayed seizures with hippocampal kindling.


Visual Cortex Visual Pathway Optic Chiasm Evoke Potential Lateral Geniculated Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bliss, T.V.P., and LOmo, T., Long lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol. (Land.), 232 (1973) 311–356.Google Scholar
  2. 2.
    Branston, N.M. and Fleming, D.G., Efferent fibers in the frog optic nerve, Expl. Neurol, 20 (1968) 611–623.CrossRefGoogle Scholar
  3. 3.
    Cajal, R.S., Histologie du Systéme Nerveux de l’Homme et des Vertébrés. Maloine, Paris. 1911.Google Scholar
  4. 4.
    Cain, D.P., Seizures development following repeated electrical stimulation of central olfatory structures, Ann. N.Y. Acad. Sci., 290 (1977) 200–216.PubMedCrossRefGoogle Scholar
  5. 5.
    Cain, D.P., Kindling in sensory systems: Thalamus, Exp. Neurol., 66 (1979) 319–329.PubMedCrossRefGoogle Scholar
  6. 6.
    Chang, H.T., Cortical responses to stimulation of lateral geniculated body and the potentiation thereof by continuous illumination of the retina, J. Neurophysiol., 15 (1952) 5–26.PubMedGoogle Scholar
  7. 7.
    Fernândez-Guardiola, A., Roldan, E., and Guzmân, C., Activación por metrazol de los potenciales evocados en las vías sensoriales específicas e inespecíficas. Bol. Inst. Est. Mid. Biol. (Méx.), 15 (1957) 37–47.Google Scholar
  8. 8.
    Fernândez-Guardiola, A., Jurado, J.L., and Calvo, J.M. Repetitive low intensity electrical stimulation of cat’s non limbic brain structures: dorsal raphe nucleus. In: J. Wada (Ed.), 2nd Kindling Symposium, Raven Press, New York, (1980) ( In Press ).Google Scholar
  9. 9.
    Goddard, G.V., Mc Intyre, C.D. and Leech, C.K., A permanent change in brain function resulting from daily electrical stimulation, Exp. Neurol., 25 (1969) 295–330.PubMedCrossRefGoogle Scholar
  10. 10.
    Granit, R. Centrifugal and antidromic effects of ganglion cells of retina. J. Neurophysiol., 18 (1955) 388–411.PubMedGoogle Scholar
  11. 11.
    Guzman, F.C., Alcaraz, M., and Fernandez-Guardiola, A. Rapid procedure to localize electrodes in experimental neurophysiology, Bol. Inst. Estud. Méd. Biol. (Max.), 16 (1958) 29–31.Google Scholar
  12. 12.
    Morell, F., Tsuru, N., Hoeppner, T.J., Morgan, D. and Harrison, W.H. Secondary epileptogenesis in frog forebrain: effect of inhibition of protein synthesis. In: J. Wada (Ed.) Kindling. Raven Press, New York, (1976) pp. 41–61.Google Scholar
  13. 13.
    Ogden, T.E., Intraretinal slow potentials evoked by brain stimulation in the primate, J. Neurophysiol., 29 (1966) 898–909.PubMedGoogle Scholar
  14. 14.
    Polyak, S.L., The Vertebrate Visual System, Univ. Chicago Press, Chicago, 1957.Google Scholar
  15. 15.
    Racine, R.J., Modification of seizure activity by electrical stimulation: I. Afterdischarge threshold, Electroenceph. clin. Neurophysiol., 32 (1972) 281–294.PubMedCrossRefGoogle Scholar
  16. 16.
    Racine, R., Gartner, J., and Burnham, W., Epileptiform activity and neurol plasticity in limbic structures, Brain Res, 47 (1972) 262–268.PubMedCrossRefGoogle Scholar
  17. 17.
    Racine, R. and Zaide, J., A further investigation into the mechanisms underlying the kindling phenomenon. In: K.E. Livingston and O. Kornykrewicz (Eds) Limbic Mechanisms, Plenum, New York (1978) pp. 457–493.Google Scholar
  18. 18.
    Snider, R.S. and Niemer, W.T., A Stereotaxic Atlas of the Cat Brain. Univ. Chicago Press, Chicago, 1961.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • A. Fernández-Guardiola
    • 1
    • 2
  • M. Condés-Lara
    • 1
    • 2
  • J. M. Calvo
    • 1
    • 2
  1. 1.Unidad de Investigaciones CerebralesInstituto Nacional de Neurología y NeurocirugíaMéxico 22, D.F.Mexico
  2. 2.Facultad de PsicologíaUniversidad Nacional Autónoma de MéxicoMexico

Personalised recommendations