On the Role of Mitochondria in Neurotransmitter Release

  • María Elena Sandoval


Depolarization of the presynaptic membrane and the presence of calcium ions in the extracellular medium appear to be essential to evoke transmitter release under physiological conditions. Most probably depolarization of the nerve terminal causes an increase in the membrane Ca2+ conductance and Ca2+ flow inside the presynaptic nerve ending along their electrochemical gradient. However depolarization is not necessary to evoke transmitter liberation since procedures that elicit an increased intracellular calcium ([Ca++]i) in the absence of depolarization lead to transmitter liberation. Thus, direct calcium injection into the squid axon and calcium entry facilitated by the calcium ionophore A23187 in synaptosomes, induce an increased transmitter release (22,31,40,46,48). This indicates that an elevated [Ca++] i is essential for transmitter release. At the frog neuromuscular junction spontaneous quantal release can be detected at rest and this rate of release is less dependent on extracellular calcium than evoked transmitter release (38,39). However, treatments that enhance [Ca++] i cause an increase in spontaneous transmitter liberation.


Nerve Terminal Neurotransmitter Release Transmitter Release Brain Mitochondrion Mitochondrial Calcium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alnaes, E., Meiri, U., Rahamimoff, H., and Rahamimoff, R., Possible role of mitochondria in transmitter release, J. Physiol., 241 (1974) 30 P.Google Scholar
  2. 2.
    Alnaes, E., and Rahamimoff, R., On the role of mitochondria in transmitter release from motor nerve terminals, J. Physiol., 248 (1975) 285–306.PubMedGoogle Scholar
  3. 3.
    Andersson, K.E., Effects of chloropromazine, imipramine and quinidine on the mechanical activity of single skeletal muscle fibers of the frog, Acta Physiol. Scand., 85 (1972) 532–546.PubMedCrossRefGoogle Scholar
  4. 4.
    Archibald, J.T. and White T.D., Rapid reversal of internal Na+ and K+ contents of synaptosomes by ouabain, Nature, 252 (1974) 595–596.PubMedCrossRefGoogle Scholar
  5. 5.
    Atwood, H.L., Swenarchuk, L.E. and Gruenwald, C.R., Long-term synaptic facilitation during sodium accumulation in nerve terminals, Brain Res., 100 (1975) 198–204.PubMedCrossRefGoogle Scholar
  6. 6.
    Baker, P.F., Neves, H. and Ridgway, E.R., Calcium entry in response to maintained depolarization of squid axons, J. Physiol. (Lond.), 231 (1973) 527–548.Google Scholar
  7. 7.
    Baker, P.F., Crowford, A.C., A note on the mechanism by which inhibitors of the sodium pump accelerate spontaneous release of transmitter from motor nerve terminals, J. Physiol. (Lond.), 247 (1975) 209–226.Google Scholar
  8. 8.
    Balzer, H., and Hellenbrecht, D., Beeinflussung des CalciumAustauchs und der Muskel-funktion des M. rectus and sartorius des Frosches durch Chloropromazin, Prenylamin, Imipramin und Reserpin, Naungn-Schmiedebergs Arch. Exp. Phath. Pharmak., 264 (1969) 129–146.CrossRefGoogle Scholar
  9. 9.
    Balzer, H., Makinose, M., and Hasselbach, W., The inhibition of the sarcoplasmic calcium pump by prenylamine, reserpine, chloropromazine and imipramine, Naunyn-Schmiedebergs Arch. Path. Pharmak., 260 (1968) 444–455.CrossRefGoogle Scholar
  10. 10.
    Batra, S., The effects of drugs on calcium uptake and calcium release by mitochondria and sarcoplasmic reticulum of frog skeletal muscle, Biochem. Pharmacol., 23 (1974) 89–101.PubMedCrossRefGoogle Scholar
  11. 11.
    Batra, S., Mitochondriasl calcium release as a mechanism for quinidine contracture in skeletal muscle., Biochem. Pharmacol., 25 (1976) 2631–2633.PubMedCrossRefGoogle Scholar
  12. 12.
    Besch, H.R. Jr. and Watanabe, A.M., Binding and effect of tritiated quinidine on cardiac subcellular enzyme systems: sarcoplasmic reticulum vesicles, mitochondria and Na+, K+-adenosine triphosphatase, J. Pharmacol. Exp. Ther., 202 (1977) 354–364.PubMedGoogle Scholar
  13. 13.
    Birks, R.I. and Cohen, M.W., The action of sodium pump inhibitors on neuromuscular transmission, Proc. Roy. Soc. B. 170 (1968) 381–399.CrossRefGoogle Scholar
  14. 14.
    Birks, R.I. and Cohen, M.W., The influence of internal sodium on the behavior of motor nerve endings, Proc. Roy. Soc. B, 170 (1968) 401–421.CrossRefGoogle Scholar
  15. 15.
    Blaustein, M.P. and Goldring, J.M., Membrane potentials in pinched off presynaptic nerve terminals monitored with a fluorescent probe: evidence that synaptosomes have potassium diffusion potentials, J. Physiol. (Lond.), 247 (1975) 589–615.Google Scholar
  16. 16.
    Blaustein, MP., Ratzlaff, R.W., Kendrick N.C. and Schweitzer, E. S., Calcium buffering in presynaptic nerve terminals. I. Evidence for involvement of a non mitochondrial ATP-dependent sequestration mechanism, J. Gen. Physiol., 72 (1978) 15–41.PubMedCrossRefGoogle Scholar
  17. 17.
    Carafoli, E. and Crompton, M., The regulation of intracellular calcium by mitochondria, Ann. N.Y. Acad. Sci., 307 (1978) 269–284.PubMedCrossRefGoogle Scholar
  18. 18.
    Carafoli, E., and Lehninger, A.L., A survey of the interaction of calcium ions with mitochondria from different tissues and species, Biochem. J., 122 (1971) 681–690.PubMedGoogle Scholar
  19. 19.
    Carafoli, E., Malmstrom, K., Capano, M., Sigel, E., and Crompton, M., Mitochondria and the regulation of cell calcium. In E. Carafoli, E., Clementi, F., Drabikowski, W., and Margreth, A. (Eds.), Calcium Transport in Contraction and Secretion, Elsevier North Holland, 1975, pp. 53–64.Google Scholar
  20. 20.
    Carafoli, E., Tiozzo, R., Lugly, G., Crovetti, F. and Kratzing, C., The release of calcium from heart mitochondria by sodium, J. Molec. Cell Cardiol. 6 (1974) 361–371.CrossRefGoogle Scholar
  21. 21.
    Chang, P., von Euler, U.S., and Lishajko, F., Effects of 2,4dinitrophenol on release and uptake of noradrenaline in guinea pig heart, Acta Physiol. Scand., 85 (1972) 501–505.PubMedCrossRefGoogle Scholar
  22. 22.
    Cotman, W.C., Haycock, J.W. and White, W.F., Stimulus-secretion coupling processes in brain: analysis of noradrenaline and gammaaminobutyric acid release, J. Physiol. (Lond.), 254 (1976) 475–505.Google Scholar
  23. 23.
    Crompton, M., Capano, M. and Carafoli, E., The sodium-induced efflux of calcium from heart mitochondria. A possible mechanism for the regulation of mitochondrial calcium, Eur. J. Biochem., 69 (1976) 453–462.CrossRefGoogle Scholar
  24. 24.
    Dembiec, D., and Cohen, G., Effect of carbonyl-binding agents and oxidative phosphorylation uncouplers on the release of [3H] norepinephrine from mouse heart, Biochem. Pharmacol., 25 (1976) 1369–1376.PubMedCrossRefGoogle Scholar
  25. 25.
    Goddard, G.A. and Robinson, D., Uptake and release of calcium by rat brain synaptosomes, Brain Res., 110 (1976) 331–350.PubMedCrossRefGoogle Scholar
  26. 26.
    Godfraind, J.M., Krnjevic, K., and Pumain, R., Unexpected features of the action of dinitrophenol on cortical neurons, Nature, 228 (1970) 562–564.PubMedCrossRefGoogle Scholar
  27. 27.
    Godfraind, J.M., Kawamura, H., Krnjevic, K., and Pumain, R., Action of dinitrophenol and some other metabolic inhibitors on cortical neurons, J. Physiol. (Lond.) 215 (1971) 195–222.Google Scholar
  28. 28.
    Glynn, I.M., The action of cardiac glycosides on sodium and potassium movements in human red cells, J. Physiol. (Lond.) 136 (1957) 148–173.Google Scholar
  29. 29.
    Haycock, J.W., Levy, V.B., Denner, L. and Cotman, C.T., Effects of elevated K+ on the release of neurotransmitters from cortical synaptosomes: efflux or secretion?. J. Neurochem. 30 (1978) 1113–1125.PubMedCrossRefGoogle Scholar
  30. 30.
    Hodgkin, A.L. and Keynes, R.D., Active transport of cations in giant axons from Sepia and Loligo., J. Physiol. (Lond.), 128 (1955) 28–60.Google Scholar
  31. 31.
    Holz, R.W.., The release of dopamine from synaptosomes from rat striatum by the ionophores X-537 A and A 23187, Biochem. Biophys. Acta. 375 (1975) 138–152.PubMedCrossRefGoogle Scholar
  32. 32.
    Jansson, S.E., Albuquerque, E.X. and Daly, J., The pharmacology of batrachotoxin VI. Effects on the mammalian motor nerve terminal, J. Pharmacol. Exp. Ther., 189 (1974) 525–537.PubMedGoogle Scholar
  33. 33.
    Levi, G. and Raiteri, H.M., Exchange of neurotransmitter amino acids at nerve endings can stimulate high affinity uptake, Nature, 253 (1974) 735–737.CrossRefGoogle Scholar
  34. 34.
    Levi, G. and Raiteri, H.M., Modulation of γ-aminobutyric acid transport in nerve endings: Role of extracellular γ-aminobutyric acid and of cationic fluxes, Proc. Nat. Acad. Sci. U.S.A., 75 (1978) 2981–2985.CrossRefGoogle Scholar
  35. 35.
    Levi, G., Roberts, P.J. and Raiteri, M., Release and exchange of neurotransmitters in synaptosomes: Effects of ionophore A 23187 and of ouabain, Neurochem. Res., 1 (1976) 409–416.CrossRefGoogle Scholar
  36. 36.
    Levi, G., Rusca, G. and Raiteri, M., Diaminobutyric acid: a tool for discriminating between carrier-mediated and non-carrier mediated release of GABA from synaptosomes?, Neurochem. Res. 1 (1976) 581–590.CrossRefGoogle Scholar
  37. 37.
    Lowe, D.A., Richardson, B.P., Taylor, P. and Donatsch, P., Increasing intracellular sodium triggers calcium release from bound pools, Nature, 260 (1976) 337–338.PubMedCrossRefGoogle Scholar
  38. 38.
    Mambini, J. and Benoit, P.R., Action du calcium sur la jonction neuromusculaire chez le grenouille, C.R. Soc. Biol. (Paris) 158 (1964) 1454–1458.Google Scholar
  39. 39.
    Mathews, G. and Wickelegren, W.O., On the effect of calcium on frequency of miniature and plate potentials at the frog neuromuscular junction, J. Physiol. (Lond.), 226 (1977) 91–101.Google Scholar
  40. 40.
    Miledi, R., Transmitter release induced by injection of calcium ions into nerve terminals, Proc. R. Soc. B., 183 (1973) 421–425.CrossRefGoogle Scholar
  41. 41.
    Nadler, J.V., Vaca, K.W., White, W.F., Lynch, G.S. and Cotman C.W., Aspartate and glutamate as possible transmitters of excitatory hippocampal afferents, Nature, 260 (1976) 538–540.PubMedCrossRefGoogle Scholar
  42. 42.
    Ohta, M., Narahashi, T. and Keeler, R.F., Effects of veratrum alkaloids on membrane potential and conductance of squid and crayfish giant axons, J. Pharmac. Exp. Ther., 184 (1973) 143–154.Google Scholar
  43. 43.
    Pang, C.D. and Briggs, N.F., Mechanism of quinidine and chloropromazine inhibition of sarcotubular ATPase activity, Biochem. Pharmacol., 25 (1976) 21–25.PubMedCrossRefGoogle Scholar
  44. 44.
    Rahamimoff, R., Erulkar, S.D., Lev-Tov, A. and Meiri, H., Intracellular and extracellula.r ions in transmitter release at the neuromuscular synapse, Ann. N.Y. Acad. Sci., 307 (1978) 583–598.PubMedCrossRefGoogle Scholar
  45. 45.
    Raiteri, M., Federico, R., Coletti, A. and Levi, G., Release and exchange studies relating to the synaptosomal uptake of GABA, J. Neurochem. 24 (1975) 1243–1250.PubMedCrossRefGoogle Scholar
  46. 46.
    Redburn, D.A., Shelton, D. and Cotman, C.W., Calcium dependent release of exogenously loaded γ-amino [U14C] butyric acid from synaptosomes: time course stimulation by potassium, veratridine and calcium ionophore A23187, J. Neurochem., 26 (1976) 297–303.PubMedCrossRefGoogle Scholar
  47. 47.
    Robinson, I.C.A.F., Russell, J.T. and Thorn, N.A., Calcium and stimulus-secretion coupling in the neurohypophysis. V. The effects of the Ca2+ ionophores A23187 and X537A on vasopressin release and 45Ca2+ efflux; interactions with sodium and a verapamil analogue (D600), Acta Endocrinol., 83 (1976) 36–49.PubMedGoogle Scholar
  48. 48.
    Sandoval, M.E., Horch, P. and Cotman, C.W., Evaluation of glutamate as a hippocampal neurotransmitter: glutamate uptake and release from synaptosomes, Brain Res., 142 (1978) 285–289.PubMedCrossRefGoogle Scholar
  49. 49.
    Sandoval, M.E., Studies on the relationship between Ca++-efflux from mitochondria and the release of amino acid neurotransmitters, Brain Res. 181 (1980) 357–367.PubMedCrossRefGoogle Scholar
  50. 50.
    Sandoval, M.E., Sodium-dependent efflux of 3H3 GABA from synaptosomes probably related to mitochondria) calcium mobilization, J. Neurochem., 35 (1980) 915–921.PubMedCrossRefGoogle Scholar
  51. 51.
    Sherman, R.G., and Atwood, H.L., Synaptic facilitation: longterm neuromuscular facilitation in crustaceans, Science, 171 (1971) 1248–1250.PubMedCrossRefGoogle Scholar
  52. 52.
    Silbergeld, E.K., Na+ regulates release of Ca++ sequestered in synaptosomal mitochondria, Biochem. Biophys. Res. Commun., 77 (1977) 464–469.PubMedCrossRefGoogle Scholar
  53. 53.
    Simon, J.R. and Martin, D.L., The effects of 2,4-diaminobutyric acid on the uptake of gamma-aminobutyric acid by a synaptosomal fraction from rat brain, Arch. Biochem. Biophys., 157 (1973) 348–355.PubMedCrossRefGoogle Scholar
  54. 54.
    Simon, J.R., Martin, D.L. and Kroll, M., Sodium-dependent efflux and exchange of GABA in synaptosomes, J. Neurochem., 23 (1974) 981–991.PubMedCrossRefGoogle Scholar
  55. 55.
    Skou, J.C., Further investigations on a Mg2+-and Na+-activated adenosine triphosphatase, possibly related to the active, linked transport of Na+ and K+ across the nerve membrane, Biochim. Biophys. Acta 42 (1960) 6–23.CrossRefGoogle Scholar
  56. 56.
    Srinivasan, V., Neal, M.J. and Mitchell, J.F., The effect of electrical stimulation and high potassium concentrations on the efflux of C311] aminobutyric acid from brain slices, J. Neurochem., 16 (1969) 1235–1244.PubMedCrossRefGoogle Scholar
  57. 57.
    Swenarchuk, L.E. and Atwood, H.L., Long-term facilitation with minimal calcium entry, Brain Res., 100 (1975) 205–208.PubMedCrossRefGoogle Scholar
  58. 58.
    Ulbricht, W., The effect of veratridine on excitable membranes of nerves and muscles, Ergbn. Physiol., 61 (1969) 18–71.Google Scholar
  59. 59.
    Vizi, E.S., Stimulation by inhibition of (Na+-K+-Mg2+)-Activated ATPase, of acetylcholine release in cortical slices from rat brain, J. Physiol. (Lond.), 226 (1972) 95–117.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • María Elena Sandoval
    • 1
  1. 1.Departamento de Neurociencias Centro de Investigaciones en Fisiología CelularUniversidad Nacional Autónoma de MéxicoMéxico 20, D.F.Mexico

Personalised recommendations