Advertisement

Development of Plane Strain Fracture Toughness Test for Ceramics Using Chevron Notched Specimens

  • R. T. Bubsey
  • J. L. ShannonJr.
  • D. Munz
Part of the Army Materials Technology Conference Series book series (volume 1)

Summary

The chevron-notch specimen is especially useful for measuring the plane strain fracture toughness, KIc, of ceramics. During test, a crack initiates at the tip of the chevron notch and extends stably as load is increased. For materials with flat crack growth resistance curves, maximum load for a given specimen configuration will always occur at the same relative crack length independent of the material. KIc is calculated from maximum load and the corresponding (minimum) value of the dimensionless stress intensity factor coefficient (Y m * ), with no need for crack length measurement.

Y(Y m * ) values have been determined for the short bar and four-point-bend specimens and have been used in fracture toughness measurements on hot pressed silicon nitride and sintered aluminum oxide. KIc for Si3N4 was essentially independent of specimen size and chevron notch configuration, with values ranging only from 4.6 to 4.9 MNm−3/2. jn contrast, significant specimen size and notch geometry effects were observed for Al2O3, with KIc values ranging from 3.1 to 4.7 MNm−3/2. These effects are believed due to a rising crack growth resistance curve for the A12O3 tested.

Keywords

Fracture Toughness Crack Growth Resistance Curve Toughness Test Fracture Toughness Test Plane Strain Fracture Toughness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. G. Clark and W. A. Logsdon, Fracture Mechanics of Ceramics, Vol 2, R. C. Bradt, D. P. H. Hasselman, and F. F. Lange, eds., Plenum, New York, 1974, pp. 843–861.CrossRefGoogle Scholar
  2. 2.
    R. W. Davidge and A. G. Evans, “The Strength of Ceramics”, Mater. Sci. Eng. 6 C1970), PP-281–298.Google Scholar
  3. 3.
    F. F. Lange, “Relation Between Strength, Fracture Energy, and Microstructure of Hot-Pressed Si3N4”, J. Am. Ceram. Soc., 56 (1973), pp. 518–522.CrossRefGoogle Scholar
  4. 4.
    L. A. Simpson, “Use of the Notched-Beam Test for Evaluation of Fracture Energies of Ceramics”, J. Am. Ceram. Soc. 57:4 CI974), pp. 151–154.Google Scholar
  5. 5.
    G. Berry, “The Fracture-Toughness Testing of Cemented Carbides”, Metal. Sci., 10 (1976), pp. 361–366.CrossRefGoogle Scholar
  6. 6.
    L. A. Simpson, T. R. Hsu, and G. Merrett, “Application of the Single-Edge Notched Beam to Fracture Toughness Testing of Ceramics”, J. Test. Eval. 2: 6, (1974), pp. 503–509.CrossRefGoogle Scholar
  7. 7.
    J. L. Henshall, D. J. Rowcliffe and J. W. Edington, “Fracture Parameters in Refel Silicon Carbide”, J. Mater. Sci., 9: 9 (1974), pp. 1559–1561.CrossRefGoogle Scholar
  8. 8.
    R. L. Bertolotti, “Fracture Toughness of Polycrystalline A12O3”, J. Amer. Ceram. Soc., 56: 2 (1973), p. 107.CrossRefGoogle Scholar
  9. 9.
    J. L. Cermant, A. Deschanvres, and A. Lost, Fracture Mechanics of Ceramics, Vol. 1, R. C. Bradt, D. P. H. Hasselman, and F. F. Lange, eds., Plenum, New York (1974), pp. 347 - 366.Google Scholar
  10. 10.
    R. F. Pabst, “Fracture Mechanics of Ceramics”, Vol. 2, R. C. Bradt, D. P. H. Hasselman, and F. F. Lange, eds., Plenum, New York (1974), pp. 555–565.CrossRefGoogle Scholar
  11. 11.
    N. Claussen, R. Pabst and C. P. Lahmann, “Influence of Microstructure of Aluminum Oxide and Zirconium Oxide on KIc”, Proc. British Ceramic Soc., 25 (1975), pp. 139–149.Google Scholar
  12. 12.
    L. M. Barker, “A Simplified Method for Measuring Plane Strain Fracture Toughness”, Eng. Fracture Mech., 9: 2 (1977) pp. 361–369.CrossRefGoogle Scholar
  13. 13.
    J. Nakayama, “Direct Measurement of Fracture Energies of Brittle Heterogeneous Materials”, J. Am. Ceram. Soc., 48: 11 (1965), pp. 583–587.CrossRefGoogle Scholar
  14. 14.
    H. G. Tattersall and G. Tappin, “The Work of Fracture and Its Measurement in Metals, Ceramics and other Materials”, J. Mater. Sci., 1: 3 (1966), pp. 296–301.CrossRefGoogle Scholar
  15. 15.
    R. W. Davidge, and G. Tappin, “The Effective Surface Energy of Brittle Materials”, J. Mater. Sci., 3: 2 (1968), pp. 165–173.CrossRefGoogle Scholar
  16. 16.
    L. A. Simpson, “Effect of Microstructure on Measurements of Fracture Energy of A1203”, J. Am. Ceram. Soc., 56: 1 (1973), pp. 7–11.CrossRefGoogle Scholar
  17. 17.
    D. J. Green, P. S. Nicholson, and J. D. Embury, “Fracture Toughness of a Partially Stabilized ZrO2 in the System CaO, ZrO2”, J. Am. Ceram. Soc., 56: 12 (1973), pp. 619–623.CrossRefGoogle Scholar
  18. 18.
    H. Hubner, “The Determination of the Specific Work of Fracture of Two Cemented Carbide Alloys in Controlled Fracture Experiments,” Z. Metallkd, 67: 8 (1976), pp. 507–513.Google Scholar
  19. 19.
    D. Munz, R. T. Bubsey and J. L. Shannon, Jr., “Fracture Tough ness Determination of A12O3 Using Four-Point-Bend Specimens with Straight Through and Chevron Notches”, to be published in J. Am. Ceram. Soc., 1980.Google Scholar
  20. 20.
    J. I. Bluhm, “Slice Synthesis of a Three Dimensional ‘Work of Fracture’ Specimen — For Brittle Materials Testing”, Eng. Fracture Mech., 7 (1975), pp. 593–604.CrossRefGoogle Scholar
  21. 21.
    J. I. Bluhm, 4th International Conference on Fracture,Google Scholar
  22. D. M. R. Taplin, ed., Univ. Waterloo Press, Waterloo, Ontario (1977), pp. 409–417.Google Scholar
  23. 22.
    D. Münz, R. T. Bubsey and J. E. Srawley, “Compliance and Stress Intensity Coefficients for Short Bar Specimens with Chevron Notches Useful for Fracture Toughness Testing of Ceramics”, to be published in Int. J. Fracture, 1980.Google Scholar
  24. 23.
    R. T. Bubsey, D. M. Fisher, M. H. Jones and J. E. Srawley, “Compliance Measurements”, Experimental Techniques in Fracture Mechanics, Soc. for Experi. Stress Anal. Monograph 1, A. S. Kobayashi, ed., Iowa State Univ. Press and Soc. for Experimental Stress Analysis, Cambridge (. 1976 ), pp. 76–95.Google Scholar
  25. 24.
    J. E. Srawley, and B. Gross, Cracks and Fracture, ASTM STP 601, Amer. Soc. for Testing § Materials, Philadelphia (1976), pp. 559–579.CrossRefGoogle Scholar
  26. 25.
    D. Münz, R. T. Bubsey and J. L. Shannon, Jr., “Fracture Toughness Calculations from Maximum Load in a Four-Point-Bend Test with Chevron Notched Specimens”, to be published.Google Scholar
  27. 26.
    D. Münz, R. T. Bubsey, and J. L. Shannon, Jr., “Performance on Chevron-Notch Short Bar Specimen in Determining Fracture Toughness of Si3N4 and Al2O3”, to be published in J. Test. Eval., May 1980.Google Scholar
  28. 27.
    H. Hubner, and W. Jillek, “Subcritical Crack Extension and Crack Resistance in Polycrystalline Alumina”, J. Mat. Sci. 12 (1977), pp. 117–125.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • R. T. Bubsey
    • 1
  • J. L. ShannonJr.
    • 1
  • D. Munz
    • 2
  1. 1.NASA Lewis Research CenterClevelandUSA
  2. 2.DFVLRCologneFR Germany

Personalised recommendations