Advertisement

Strength and Fracture Toughness of Silicon Carbide

  • Jochen Kriegesmann
  • Alfred Lipp
  • Klaus Reinmuth
  • Karl A. Schwetz
Part of the Army Materials Technology Conference Series book series (volume 1)

Abstract

Flexural strength of four different grades of dense silicon carbide was measured at different temperatures. It could be demonstrated by scanning electron microscopy that strength remains constand up to high temperatures, if the fracture mechanism turns out to be transgranular. In the case of intergranular fracture the decrease of strength with temperature is governed by subcritical crack growth.

Static fracture toughness vs. temperature characteristics have also been determined. The static fracture toughness data at high temperatures are assumed to be dependent upon subcritical crack growth in the case of intergranular fracture mechanism.

Keywords

Fracture Toughness Silicon Carbide Flexural Strength Boron Carbide Secondary Crack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. F. Lange, and J.L. Iskoe, High-Temperature Strength Behavior of Hot-Pressed Si3N4 and SiC: Effect of Impurities, in “Ceramics for High Performance Applications”, J.J. Burke, A.E. Gorum, and R.N. Katz. eds., Brook Hill Publishing Company, Chestnut Hill (1974)Google Scholar
  2. 2.
    F.F. Lange, High-Temperature Strength Behavior of Hot-Pressed Si3N4: Evidence for Subcritical Crack Growth, J. Amer. Ceram., Soc. 57: 84 (1974)CrossRefGoogle Scholar
  3. 3.
    A.G. Evans, and F.F. Lange, Crack Propagation and Fracture in Silicon Carbide, J. Mat. Sci. 10: 1659 (1975)CrossRefGoogle Scholar
  4. 4.
    A.G. Evans, High-Temperature Slow Crack Growth in Ceramic Materials, in the same source as ref. 1Google Scholar
  5. 5.
    J. Kriegesmann, Biegefestigkeitsuntersuchungen an heißgepreßtem Siliciumcarbid, Ber. Dt. Keram. Ges., 55: 391 (1978)Google Scholar
  6. 6.
    J. Kriegesmann, K. Reinmuth, and A. Lipp, Die Herstellung und Eigenschaften von heißgepreßtem und heißisostatisch gepreßtem SiC, in “Keramische Komponenten für Fahrzeug-Gasturbinen” W. Bunk, and M. Böhmer eds.,Springer Verlag, Berlin, Heidelberg, New York (1978)Google Scholar
  7. 7.
    L.A. Simpson, Use of the Notched-Beam Test for Evaluation of Fracture Energies, J. Amer. Ceram. Soc. 57: 151 (1974)CrossRefGoogle Scholar
  8. 8.
    R. Pabst, G. Popp, and L. Li, private communicationGoogle Scholar
  9. 9.
    M.G. Mendiratta, J. Wimmer, and I. Bransky, Dynamic KIC and Dynamic Flexural Strength in HS-130 Si3N4., J.Mat. Sci. 12: 212 (1977)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Jochen Kriegesmann
    • 1
  • Alfred Lipp
    • 1
  • Klaus Reinmuth
    • 1
  • Karl A. Schwetz
    • 1
  1. 1.Elektroschmelzwerk Kempten GmbHMünchen 33Deutschland

Personalised recommendations