A Comparative Study of the Mechanical Strength of Reaction-Bonded Silicon Nitride

  • H. Fessler
  • D. C. Fricker
  • D. J. Godfrey
Part of the Army Materials Technology Conference Series book series (volume 1)


The main objective of this investigation was to determine the room-temperature fracture strength of RBSN1 for a wide range of multiaxial stress ratios; it was compared with that for uniaxial tension, using Weibull statistics to describe the strength variability of the material, and the ‘independent-action’ failure criterion2 in preference to other criteria3.


Failure Probability Open Ring Nominal Stress Weibull Modulus Brazilian Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.J. Godfrey and M.W. Lindley, The strength of reaction-bonded silicon nitride ceramics, Proc. Brit. Ceram. Soc. 22: 229 (1973).Google Scholar
  2. 2.
    S.B. Batdorf, Fundamentals of the statistical theory of frac ture, in: Fracture mechanics of ceramics Vol. 3n, R.C. Bradt et al., eds., Plenum Press, New York (1978).Google Scholar
  3. 3.
    A.D. Sivill, “The development and application of a statistical basis for the design of brittle components”, Ph.D. Thesis, Nottingham University (1974), pp. 212–219.Google Scholar
  4. 4.
    P. Stanley, H. Fessler and A.D. Sivill, An engineer’s approach to the prediction of failure probability of brittle components, Proc. Brit. Ceram. Soc., 22: 453 (1973).Google Scholar
  5. 5.
    P. Stanley and A. D. Sivill, On the biaxial fracture strength of reaction-bonded silicon nitride, Proc. Brit. Ceram. Soc., 26: 97 (1978).Google Scholar
  6. 6.
    G. Sines and M. Adams, Compression testing of ceramics, in: ibid. Ref. 2.Google Scholar
  7. 7.
    P. Stanley, A.D. Sivill and H. Fessler, The unit strength concept in the interpretation of beam test results for brittle materials, Proc. Instn. Mech. Engrs. 190 49 /76: 585 (1976).CrossRefGoogle Scholar
  8. 8.
    S.P. Timoshenko and J.N. Goodier, “Theory of elasticity”, McGraw-Hill Kogakusha Ltd., Tokyo (1970), p. 83.Google Scholar
  9. 9.
    Ibid. Eef. 3, pp. 340–341.Google Scholar
  10. 10.
    Ibid. Eef. 3, p. 342.Google Scholar
  11. 11.
    Ibid. Eef. 8, pp. 309–313.Google Scholar
  12. 12.
    G. Hondros, Poisson’s ratio and elastic modulus by Brazilian test, Australian J. of Appl. Sci., 10: 265 (1959).Google Scholar
  13. 13.
    Ö Vardar and I. Finnie, An analysis of the Brazilian disk fracture test using the Weibull probabilistic treatment of brittle strength, Int. J. Fracture, 11: 495 (1975).Google Scholar
  14. 14.
    E.I. Eadzimovsky, Stress distribution and strength condition of two rolling cylinders pressed together, Univ. of Illinois Eng. Exp. Station, Bulletin No. 408 (1953).Google Scholar
  15. 15.
    D. C. Fricker, “Failure predictions for ceramic gas turbine components under mechanical loading”, Ph.D. Thesis, Nottingham University (1979), pp. 262–266.Google Scholar
  16. 16.
    F.I. Baratta, G.W. Driscoll and R.N. Katz, The use of fracture mechanics and fractography to define surface finish requirements for Si3N4, in: “Ceramics for high performance applications”, J.J. Burke et al., eds., Brook Hill Publishing Co., Chestnut Hill, Mass. (1970).Google Scholar
  17. 17.
    J. Gramberg, Axial cleavage fracture, Eng. Geol. 1: 31 (1965).CrossRefGoogle Scholar
  18. 18.
    H.L. Price and K.H. Murray, Finite element analysis of the diametral compression test of polymer moldings, J. Eng. Mat. Tech., 95H: 186 (1973)CrossRefGoogle Scholar
  19. 19.
    R.H. Marion and J.K. Johnstone, A parametric study of the diametral compression test for ceramics, Amer. Ceram. Soc. Bulletin, 56: 998 (1977).Google Scholar
  20. 20.
    G. Sines and M. Adams, The use of brittle materials as compressive structural elements, ASME Paper No. 75-DE-23 (1975).Google Scholar
  21. 21.
    Ibid. Ref. 3, pp. 105–134.Google Scholar
  22. 22.
    P. Stanley, A.D. Sivill and H. Fessler, The application and confirmation of a predictive technique for the fracture of brittle components, in: “Proc. 5th Int. Conf. on Experimental Stress Analysis”, CISM, Udine, Italy (1974).Google Scholar
  23. 23.
    Ibid. Ref. 15, pp. 183–198.Google Scholar
  24. 2*.
    R.W. Rice, Machining of ceramics, in: ibid. Ref. 16.Google Scholar
  25. 25.
    M. Adams and G. Sines, Determination of biaxial compressive strength of a sintered alumina ceramic, J. Amer. Ceram. Soc., 59: 300 (1976).CrossRefGoogle Scholar
  26. 26.
    M. Adams and G. Sines, Methods for determining the strength of brittle materials in compressive stress states, JTEVA, 4: 383 (1976).Google Scholar
  27. 27.
    Ibid. Ref. 15, pp. 215–219.Google Scholar
  28. 28.
    G. Tappin, R.W. Davidge and J.R. McLaren, The strength of ceramics under biaxial stresses, in: ibid. Ref. 2. 29.Google Scholar
  29. 29.
    H.W. Babel and G. Sines, An improved method of uniaxial and biaxial testing of brittle materials, JMLSA, 3: 134 (1968).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • H. Fessler
    • 1
  • D. C. Fricker
    • 1
  • D. J. Godfrey
    • 2
  1. 1.University of NottinghamEngland
  2. 2.Admiralty Marine Technology EstablishmentHolton HeathUK

Personalised recommendations