Advertisement

Duo-Density Ceramic Turbine Rotor Development

  • Robert R. Baker
  • Lewis R. Swank
Part of the Army Materials Technology Conference Series book series (volume 1)

Abstract

Ford Motor Company has been developing ceramics for gas turbine applications for over 10 years. The replacement of high cost nickel-chrome superalloys with low cost, higher temperature capability ceramics offers significant advantages in efficiency, exhaust emissions, power per unit weight, cost and materials utilization. Successful application of ceramics to gas turbines would therefore not only have military significance but would also greatly influence our national concerns of air pollution, critical materials availability(1) and utilization, and the energy crisis.

Keywords

Silicon Nitride Injection Molding Turbine Rotor Defense Advance Research Project Agency Defense Advance Research Project Agency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. G. Salter, C. Dziter, E. D. Harris, W. E. Mooz, K. A. Wolf, “Strategic Defense Materials: A Case Study of High Temperature Engines11”, ARPA Order No, 189-1, February, 1977.Google Scholar
  2. 2.
    R. R. Baker, J. H. Buechel, P. H. Havstad, D. L. Hartsock, “Test and Development of Ceramic Combustors, Stators, Nose Cones, and Rotor Tip Shrouds”, Ceramics for High Performance Applications — II, J. J. Burke, E. N. Lenoe, and R. N. Katz, editors, Brook Hill Publishing Company, p. 291–315.Google Scholar
  3. 3.
    A. F. McLean, R. R. Baker, “Brittle Materials Design, High Temperature Gas Turbine”, AMMRC TR 78–14, 12th Interim Report, March, 1978.Google Scholar
  4. 4.
    R. R. Baker, A. Ezis, M. U. Goodyear, D. L. Hartsock, “Developments in Press Bonding of Duo-Density Rotors”, Ceramics for High Performance Applications — II, J. J. Burke, E. N. Lenoe, and R. N. Katz, editors, Brook Hill Publishing Company, p. 207–230.Google Scholar
  5. 5.
    R. R. Baker, J. C. Caverly, P. H. Havstad, “Ceramic Turbine Rotors — Engine Test and Development”, ibid, p. 273–290.Google Scholar
  6. 6.
    C. F. Johnson, T. G. Mohr, “Injection Molding 2.7g/cc Silicon Nitride Turbine Rotor Blade Rings Utilizing Automatic Control”, ibid, p. 193–206.Google Scholar
  7. 7.
    A. F. McLean, R. R. Baker, “Brittle Materials Design — High Temperature Gas Turbine”, AMMRC CTR 76-31, 10th Interim Report, October, 1976.Google Scholar
  8. 8.
    R. R. Baker, “Crack Protection Method”, U. S. patent 4,127,684, November 28, 1978.Google Scholar
  9. 9.
    A. F. McLean, E. A. Fisher, R. J. Bratton, D. G. Miller, “Brittle Materials Design — High Temperature Gas Turbine”, AMMRC CTR 75–28 8th Interim Report, October, 1975.Google Scholar
  10. 10.
    G. C. DeBell, J. G. LaFond, W. E. Meyer, J. R. Secord, “Development of a Ceramic Turbine Rotor Hot Spin Test Rig”, Ceramics for High Performance Applications, — II, J. J. Burke, E. N. Lenoe, and R. N. Katz, editors, Brook Hill Publishing Company, p. 243–258.Google Scholar
  11. 11.
    A. F. McLean, R. R. Baker, “Brittle Materials Design — High Temperature Gas Turbine”, AMMRC TR 79-11 13th Interim Report, February, 1979.Google Scholar
  12. 12.
    L. G. Johnson, General Motors Research Reliability Manual, GMR 302, Chapter 2.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Robert R. Baker
    • 1
  • Lewis R. Swank
    • 1
  1. 1.Engineering and Research StaffFord Motor CompanyDearbornUSA

Personalised recommendations