Material Parameters for Life Prediction in Ceramics

  • R. K. Govila
Part of the Army Materials Technology Conference Series book series (volume 1)


A detailed experimental study of critical material parameters needed for life prediction methodology in hot-pressed silicon nitride, NC132, has been made. The primary experimental techniques were double torsion and indentation induced flaw methods to determine the relationship between crack velocity, V, and stress intensity, K, during subcritical crack growth.

The subcritical crack growth exponent ‘n’ was determined using flexural stress and strain rate methods and stress rupture methods, and showed a wide scatter in magnitude. When all the relevant life prediction parameters such as inherent flaw size, strength, critical stress intensity factor, and K-V relationship for slow crack growth are known, an estimate of time to failure for a given applied stress, temperature and environment can be made using the numerical relation-ships outlined by Evans and Wiederhorn earlier. Care should be taken in selecting the appropriate parameters since these parameters are a function of evaluation technique otherwise the predicted time to failure will show a large variation. Future work in the current program will be designed to verify this life prediction methodology by comparing data obtained from simple uniaxial tensile stress rupture testing done in the temperature regimes of fast fracture (< 1200°C) and slow crack growth (> 1200°C).

The life prediction methodology as outlined in this study should be equally applicable to other ceramic materials which show a time dependent fracture behavior.


Stress Intensity Factor Life Prediction Crack Velocity Stress Rupture Slow Crack Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Evans and J. V. Sharp, J. Mater. Sci., 6, 1292 (1971).CrossRefGoogle Scholar
  2. 2.
    R. Kossowsky, J. Am. Ceram. Soc., 56, 531 (1973).CrossRefGoogle Scholar
  3. 3.
    D. W. Richerson, Am. Ceram. Soc. Bull., 52, 560 (1973).Google Scholar
  4. 4.
    F. F. Lange, J. Am. Ceram. Soc., 57, 84 (1974).CrossRefGoogle Scholar
  5. 5.
    S. D. Hartline, R. C. Bradt, D. W. Richerson and M. L. Torti, J. Am. Ceram. Soc., 57, 190 (1974).CrossRefGoogle Scholar
  6. 6.
    D. R. Clarke and G. Thomas, J. Am. Ceram. Soc., 60, 491 (1977).CrossRefGoogle Scholar
  7. 7.
    A. G. Evans, Fracture Mechanics of Ceramics, Vol. 1, Plenum Press, New York, pp. 17–48 (1974).Google Scholar
  8. 8.
    G. G. Trantina, J. Am. Ceram. Soc., 60, 338 (1977).CrossRefGoogle Scholar
  9. 9.
    A. G. Evans and S. M. Wiederhorn, J. Mater. Sci., 9, 270 (1974).CrossRefGoogle Scholar
  10. 10.
    D. P. Williams and A. G. Evans, J. Test. Eval., 1, 264 (1973).CrossRefGoogle Scholar
  11. 11.
    A. G. Evans, J. Mater. Sci., 7, 1137 (1972).CrossRefGoogle Scholar
  12. 12.
    P. H. Hodkinson and J. S. Nadeau, J. Mater. Sci., 10, 846, 1975 ).CrossRefGoogle Scholar
  13. 13.
    P. W. R. Beaumont and R. J. Young, J. Mater. Sci., 10, 1334 (1975).CrossRefGoogle Scholar
  14. 14.
    R. K. Govila, “Methodology for Ceramic Life Prediction and Related Proof Testing,” Interim Tech. Rept. AMMRC TR 78 - 29, July 1978.Google Scholar
  15. 15.
    R. H. Keays, “Review of Stress Intensity Factors for Surface and Internal Cracks”,11 Structures and Materials Report 343, Dept. of Supply, Australian Defense Scientific Service, Aeronautical Research Laboratories, April, 1973.Google Scholar
  16. 16.
    R. C. Shah and A. S. Kobayashi; Stress Analysis and Growth of Cracks. Am. Soc. Test. Mater., Spec. Tech. Publ. No. 513, pp. 3–21 (1972).Google Scholar
  17. 17.
    A. A. Griffith, Phil. Trans. Roy. Soc. London, Ser. A, 221, 163 (1920).Google Scholar
  18. 18.
    J. A. Coppola, R. C. Bradt, D. W. Richerson and R. A. Alliegro, J. Am. Ceram. Soc. Bull., 51, 847 (1972).Google Scholar
  19. 19.
    A. G. Evans and S. M. Wiederhorn, Int. J. Fract. Mech., 10, 379 (1974).CrossRefGoogle Scholar
  20. 20.
    J. J. Petrovic and L. A. Jacobson, Ceramics for High Performance Applications, Chestnut Hill, Mass., pp. 397–414 (1974).Google Scholar
  21. 21.
    J. J. Petrovic, L. A. Jacobson, P. K. Talty and A. K. Vasudevan, J. Am. Ceram. Soc., 58, 113 (1975).CrossRefGoogle Scholar
  22. 22.
    A. G. Evans, L. R. Russell and D. W. Richerson, Met. Trans., 6A, 707 (1975).CrossRefGoogle Scholar
  23. 23.
    N. J. Tighe, J. Mater. Sci., 13, (1978).Google Scholar
  24. 24.
    S. M. Wiederhorn and N. J. Tighe, J. Mater. Sci., 13, 1781, (1978).CrossRefGoogle Scholar
  25. 25.
    M. G. Mendiratta and J. J. Petrovic, J. Am. Ceram. Soc., 61, 226 (1978).CrossRefGoogle Scholar
  26. 26.
    F. F. Lange, J. Am. Ceram. Soc., 56, 518 (1973).CrossRefGoogle Scholar
  27. 27.
    J. J. Mecholsky, S. W. Freiman and R. W. Rice, J. Mater. Sci., 11, 1310 (1976).CrossRefGoogle Scholar
  28. 28.
    R. K. Govila and K. R. Kinsman, Am. Ceram. Soc. Bull., 57, 316 (1978).Google Scholar
  29. 29.
    R. K. Govila, K. R. Kinsman and P. Beardmore, J. Mater. Sci., 14, 1095 (1979).CrossRefGoogle Scholar
  30. 30.
    R. J. Charles, J. Appl. Phys., 29, 1657 (1958).CrossRefGoogle Scholar
  31. 31.
    R. W. Davidge, J. R. McLaren and G. Tappin, J. Mater. Sci., 8, 1699 (1973).CrossRefGoogle Scholar
  32. 32.
    G. D. Quinn and R. N. Katz, Am. Ceram. Soc. Bull., 57, 1057 (1978).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • R. K. Govila
    • 1
  1. 1.Ceramic Materials Department Scientific Research StaffFord Motor CompanyDearbornUSA

Personalised recommendations