Advertisement

Factors Influencing the Quality of Fully Dense Silicon Nitride

  • G. E. Gazza
  • R. N. Katz
  • H. Knoch
Part of the Army Materials Technology Conference Series book series (volume 1)

Abstract

Dense silicon nitride, which can be produced by hot pressing or sintering, is adaptable to compositional and/or microstructural alterations which can improve the reliability and performance of the material. The compositional approach involves additive selection, impurity effects, and phase equilibria studies. Microstructural improvement relies on starting material characteristics and optimum selection of process parameters.

Keywords

Silicon Nitride High Temperature Strength Impurity Effect Compositional Control Phase Equilibrium Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. G. Deeley, J. M. Herbert, and N. C. Moore, “Dense Silicon Nitride,” Powder Met., 8, 145–51 (1961).CrossRefGoogle Scholar
  2. 2.
    G. E. Gazza, “Hot Pressed Si3N4,” Jour. Amer. Ceram. Soc., 56, [12], 662 (1973).CrossRefGoogle Scholar
  3. 3.
    I. C. Huseby and G. Petzow, “Influence of Various Densifying Additives on Hot Pressed Si3N4,” Powder Met. Int., 6, [1], 17–19 (1974).Google Scholar
  4. 4.
    K. S. Mazdiyasni and C. M. Cooke, “Consolidation, Microstructure, and Mechanical Properties of Si3N4 Doped With Rare Earth Oxides,” Jour. Amer. Ceram. Soc., 57, [12], 536 (1974).CrossRefGoogle Scholar
  5. 5.
    A. W. J. M. Rae, D. P. Thompson and K. H. Jack, “The Role of Additives in the Densification of Nitrogen Ceramics,” Proc. 5th Army Materials Technology Conference, Ceramics for High Performance Application — II, Burke, Lenoe and Katz, eds., Brook-Hill Pub. Co. (1978).Google Scholar
  6. 6.
    R. N. Katz and G. E. Gazza, “Grain Boundary Engineering and Control in Nitrogen Ceramics,” Proc. NATO Advanced Study Inst, on Nitrogen Ceramics, Nitrogen Ceramics, F. L. Riley, ed., Noordhoff Int. Pub. Co. (1977).Google Scholar
  7. 7.
    F. F. Lange, “Relation Between Strength, Fracture Energy and Microstructure of Hot Pressed Si3N4,” Jour. Amer. Ceram. Soc., 56, [10], 518–522 (1973).CrossRefGoogle Scholar
  8. 8.
    H. Knoch and G. Ziegler, “Influence of Powder Composition and Sintering Temperature on Transformation Kinetics, Microstructure, and Mechanical Properties of Hot Pressed Silicon Nitride,” Ber. Dtsch. Keram. Ges., 55, [4], 242–45 (1978).Google Scholar
  9. 9.
    L. J. Bowen and T. G. Carruthers, “Development of Mechanical Strength m Hot Pressed Silicon Nitride,” Jour. Matl Sci., 13, 684–87 (1978).CrossRefGoogle Scholar
  10. 10.
    A. W. J. M. Rae, D. P. Thompson, N. J. Pipkin and K. H. Jack, “The Structure of Yttrium Silicon Oxynitride and Its Role in the Hot Pressing of Silicon Nitride With Yttria Additions,” Special Ceramics 6, P. Popper, ed., 347–60, Brit. Ceram. Res. Assoc., Stoke-on-Trent (1975).Google Scholar
  11. 11.
    S. Prochazka and C. D. Greskovich, “Development of a Sintering Process for High-Performance Silicon Nitride,” Gen. Elec. Co., Corp. R§D, Schenectady, NY, Final Report AMMRC TR 78-32 under AMMRC/DOE Interagency Agreement EC-76-A-1017.Google Scholar
  12. 12.
    A. Tsuge, K. Nishida and M. Komatsu, “High Temperature Strength of Hot Pressed Si3N4 Containing Y2O3,” Jour. Amer. Ceram. Soc., 58, [7–8], 323–325 (1975).CrossRefGoogle Scholar
  13. 13.
    D. W. Richerson, “Effect of Impurities on the High Temperature Properties of Hot Pressed Silicon Nitride,” Amer. Ceram. Soc. Bull., 52, (7), 560 (1973).Google Scholar
  14. 14.
    R. Kossowsky, “The Microstructure of Hot Pressed Silicon Nitride,” Jour. Mat. Sci., 8, 1603 (1973).CrossRefGoogle Scholar
  15. 15.
    F. F. Lange and J. L. Iskoe, “High Temperature Strength Behavior of Hot Pressed Si3N4 and SiC: Effect of Impurities,” Ceramics for High Performance Application, Chap. 11, J. J. Burke, A. E. Gorum and R. N. Katz, eds., Brook Hill Pub. Co., Chestnut Hill, MA (1974).Google Scholar
  16. 16.
    F. F. Lange, S. C. Singhal and R. C. Kuznicki, “Phase Relations and Stability Studies in the Si3N4-SiO2-Y2O3 Pseudoternary System,” Jour. Amer. Ceram. Soc., 60, [5–6], 249–52, (May-June 1977 ).Google Scholar
  17. 17.
    G. E. Gazza, H. Knoch and G. D. Quinn, “Hot Pressed with Improved Thermal Stability,” Amer. Ceram. Soc. Bull., 57, [11], 1059–60, (Nov. 1978).Google Scholar
  18. 18.
    J. J. Brennan, “Development of Silicon Nitride of Improved Toughness,” Final Report NASA CR-159676, Oct. 2, 1979 (United Tech. Research Center, East Hartford, CT, NASA Lewis Contract NAS3-21375).Google Scholar
  19. 19.
    H. Knoch and G. E. Gazza, “Carbon Impurity Effect on the Thermal Degradation of a Si3N4-Y2O3 Ceramic,” AMMRC TR 79–27, (May 1979).Google Scholar
  20. 20.
    F. F. Lange, “Dense Si3N4.: Interrelation Between Phase Equilibria, Microstructure, and Mechanical Properties,” Nitrogen Ceramics, F. L. Riley, ed., 491–509, (Noordhoff-Leyden 1977 ).Google Scholar
  21. 21.
    G. Himsolt, H. Knoch, H. Huebner and F. W. Kleinlein, “Mechanical Properties of Hot Pressed Silicon Nitride With Different Grain Structures,” Jour. Amer. Ceram. Soc., 62, [1–2] 29–32 (1979).CrossRefGoogle Scholar
  22. 22.
    H. Knoch, G. E. Gazza and R. N. Katz, “The Influence of Processing Parameters on Development of Microstructure in Hot-Pressed Silicon Nitride,” Proc. 4th CIMTEC Int. Meeting on Modern Ceramic Technologies, Saint Vincent, Italy (1979).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • G. E. Gazza
    • 1
  • R. N. Katz
    • 1
  • H. Knoch
    • 2
  1. 1.Army Materials and Mechanics Research CenterWatertownUSA
  2. 2.Deutsche Forschungs und Versuchsanstalt fur Luft und Raumfahrt e.V.Deutschland

Personalised recommendations