Advertisement

The Inverse Problem in 1-D Reflection Seismics

  • Patrick Lailly
Part of the Ettore Majorana International Science Series book series (EMISS, volume 11)

Abstract

We deal with the inverse problem in 1-D reflection seismics assuming a horizontally stratified medium and a plane (horizontal) wave excitation, the problem is to find some parameters (only function of the depth) of the substratum from surface observations.

Keywords

Inverse Problem Reflection Coefficient Impulse Response Acoustical Impedance Multiple Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Bamberger, G. Chavent, P. Lailly, “Etude mathématique et numérique d’un problème inverse pour 1 ′ équation des ondes à une dimension”, Rapport Laboria n° 226, IRIA, BP 105, 78150 Le Chesnay, Rapport Gentre de Mathématiques Appliquées n° 14, Ecole Polytechnique, 91128 Palaiseau Cedex, France.Google Scholar
  2. 2.
    A. Bamberger, G. Chavent, P. Lailly, “About the stability of the inverse problem in the 1-D wave equation — Application to the interpretation of seismic profiles”, Journal of Applied Mathematics and Optimization, n° 5, p. 1–47, 1979.Google Scholar
  3. 3.
    G. Chavent, “Identification of functional parameters in partial differential equations” in “Identification of parameters distributed systems”, Edited by R.E. Goodson and M. Polis A.S.M.E., New York, 1974.Google Scholar
  4. 4.
    D.M. Detchmendy, “Attenuation and inverse problems in wave propagation”, Swieeco 1968, Esso production Research Company, Houston, Texas.Google Scholar
  5. 5.
    M.L. Gerver, “The inverse problem for the vibrating string equation”, Izv. Acad. Sci. URSS, Physic Solid Earth, 1970–71.Google Scholar
  6. 6.
    B. Gjevick, A. Nilsen, J. Hoyen, “An attempt at the inversion of the reflection data”, Geophysical Prospecting, 24, 1976, p. 492–505.CrossRefGoogle Scholar
  7. 7.
    B. Gopinath, M.M. Sondhi, “Inversion of the telegraph equation and the synthesis of non uniform lines”, Proc. IEEE, 59, 1971, 3.CrossRefGoogle Scholar
  8. 8.
    G. Kunetz, “Quelques exemples d’analyse d’enregistrements sismiques”, Geophysical Prospecting, II, 1963, 4.Google Scholar
  9. 9.
    M. Lavergne, C. Willm, “Inversion of seismograms and pseudo velocity logs”, Geophysical Prospecting, V. 25, 1977, p. 231–250.CrossRefGoogle Scholar
  10. 10.
    C. Lemarechal, “Non differentiable optimization subgradient and ε-subgradient methods”, Lecture Notes in Econ. and Math. Systems, Vol. 117, “Optimization and Operational Research”, Springer, Berlin, 1976.Google Scholar
  11. 11.
    J. L. Lions, “Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles”, Dunod, 1968.Google Scholar
  12. 12.
    F. Murat, “Contre exemples pour divers problèmes où le contrôle intervient dans les coefficients”, Annali. Mat. ed applicata 4, Vol. 112, p. 49–68, 1977.CrossRefGoogle Scholar
  13. 13.
    M. Schoenberger, P.K. Levin, “The effect of subsurface sampling on 1-D synthetic seismograms”, Paper presented at the 48th Annual International SEG Meeting, November 1, 1978, San Francisco, U.S.A.Google Scholar
  14. 14.
    S. Spagnolo, “Convergence in energy for elliptic operators”, in Numerical solution of partial differential equations, III, Synspade 1975, B. Hubbard ed. Academic Press, New York, 1976.Google Scholar
  15. 15.
    P.G. Stone, “Robust wavelet estimation by structural deconvolution”, Paper presented at the 46th Annual meeting of the SEG in Houston, Texas, October 1976.Google Scholar
  16. 16.
    P.C. Wuenschel, “Seismogram synthesis including multiples and transmission coefficients”, Geophysics, 25, 1960, 1, 106–129.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Patrick Lailly
    • 1
  1. 1.I.N.R.I.A.Le ChesnayFrance

Personalised recommendations