The Resolving Power of Seismic Surface Waves with Respect to Crust and Upper Mantle Structural Models

  • Giuliano F. Panza
Part of the Ettore Majorana International Science Series book series (EMISS, volume 11)


The recording and, to a large extent, the processing of the data to obtain phase and group velocities is a relatively straightforward procedure. To draw inferences from the velocities about the physical properties of the Earth is, however, a much more equivocal process involving serious questions of non uniqueness. A rather complete review of surface wave measurements is given by Kovach (1978) on a world wide scale and by Panza et al.(1978) for the European area. The primary goal of this paper is to provide a brief summary on the inversion techniques relevant to seismic surface wave studies and to show an example of their applicability to other indirect geoexploration methods.


Phase Velocity Group Velocity Rayleigh Wave High Mode Crustal Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Backus, G.E., and Gilbert, J.F., 1968, The Resolving Power of Gross Earth Data, Geophys. J. Roy. Astron. Soc., 16:169.CrossRefGoogle Scholar
  2. Backus, G.E., and Gilbert, J.F., 1970, Uniqueness in the inversion of inaccurate gross Earth data, Phil. Trans. Roy. Soc., A, 266: 123.CrossRefGoogle Scholar
  3. Bessonova, E.N., Fishman, V.M., Ryaboi, V.Z., and Sitnikova, G.A., 1974, The tau-method for inversion of travel times, I. Deep seismic sounding data, Geophys. J. Roy. Astron. Soc., 36:377.CrossRefGoogle Scholar
  4. Bessonova, E.N., Fishman, V.M., Shnirman, M.G., and Johnson, L.R., 1976, The tau-method for inversion of travel times. II. Earthquake data, Geophys. J. Roy. Astron. Soc., 46:87.CrossRefGoogle Scholar
  5. Brodskii M., and Levshin, A, 1979, An Asymptotic approach to the inversion of free oscillation data, Geophys. J. Roy. Astr. Soc., 58:631.CrossRefGoogle Scholar
  6. Calcagnile, G., Canziani, R., Monterisi, R., and Panza, G.F., 1979a, Potere risolutivo di sondaggi dipolari(Schlumberger), Geol. Appl. e Idrogeol., 14:181.Google Scholar
  7. Calcagnile, G., D’Ingeo, F., and Panza, G.F., 1980, The lithosphere in south-eastern Europe: Preliminary results, Proc. Symp. 8, EGS-Wien, 11–14 Sept., 1979, in press.Google Scholar
  8. Calcagnile, G., and Panza, G.F., 1979, Crustal and upper mantle structure beneath the Apennines region as inferred from the study of Rayleigh waves, J. Geophys., 45:319.Google Scholar
  9. Calcagnile, G., Panza, G.F., and Knopoff, L., 1979b, Upper mantle structure of North-Central Italy from Rayleigh waves phase velocities, Tectonophysics, 56:51.CrossRefGoogle Scholar
  10. Cassinis, R., Franciosi, R., and Scarascia, S., 1979, The structure of the Earth’s crust in Italy. A preliminary typology based on seismic data, Boll. Geof. Teor. Appl., 21:105.Google Scholar
  11. Cloeting, S., Nolet, G., and Wortel, R., 1979, On the use of Rayleigh wave group velocities for the analysis of continental margins, Tectonophysics, 59:335.CrossRefGoogle Scholar
  12. Cloeting, S., Nolet, G., and Wortel, R., 1980, Standard graphs and tables for the interpretation of Rayleigh wave group velocities in crustal studies, Proc. Roy. Neth. Ac. Sci., B83(1):101.Google Scholar
  13. Keilis-Borok, V.I., and Yanovskaya, T.B., 1967, Inverse problems of seismology, Geophys. J. Roy. Astron. Soc., 13:223.CrossRefGoogle Scholar
  14. Keilis-Borok, V.I., 1971, The inverse problem of seismology, in: ”Proc.Int.School of Physics E. Fermi, course 50”, J. Coulomb and M. Caputo, ed., Academic Press, New York.Google Scholar
  15. Knopoff, L., 1977, Relative errors in Group velocity measurements. J. Geophys., 43:509.Google Scholar
  16. Knopoff, L., 1972, Observation and Inversion of Surface wave dispersion, Tectonophysics, 13:497.CrossRefGoogle Scholar
  17. Knopoff, L., and Chang, F-S, 1977, The inversion of Surface Wave Dispersion Data with Random Errors, J. Geophys., 43:299.Google Scholar
  18. Knopoff, L., and Panza, G.F., 1977, Resolution of Upper Mantle Structure using higher modes of Rayleigh waves, Ann. Geofis., 30:491.Google Scholar
  19. Kovach, R.L., 1978, Seismic surface waves and Crustal and Upper Mantle Structure, Rev. Geophys. Space Phys., 16:1.CrossRefGoogle Scholar
  20. Levshin, A., Pisarenko, V., and Pogrebinsky, G., 1972, On a frequency time analysis of oscillations, Ann. Geophys., 28:211.Google Scholar
  21. Mitchel, R.G., 1977, The Structure of Western North America from Multimode Rayleigh Wave Dispersion, Ph.D. Thesis, University of California, Los Angeles, U.S.A.Google Scholar
  22. Mayer-Rosa, D., and Mueller, St., (1973, The gross velocity depth distribution of P and S waves in the upper mantle of Europe from Earthquake observations, Z. Geophys., 39:395.Google Scholar
  23. Mseddi, R., 1976, Determination sismique de la structure du Manteau superieur sous la Medi terraneè, Ph.D. Thesis,-Univ. Pierre et Marie Curie, Paris, France.Google Scholar
  24. Nolet, G., 1975, Higher Rayleigh Modes in Western Europe, Geophys. Res. Letters, 2:60.CrossRefGoogle Scholar
  25. Nolet, G., 1977, The Upper Mantle under Western Europe inferred from the Dispersion of Rayleigh Modes, J. Geophys., 43:265.Google Scholar
  26. Nolet, G., and Panza, G.F., 1976, Array Analysis of Seismic Surface Waves: Limits and Possibilities, Pure and Appl. Geophys., 114:773.CrossRefGoogle Scholar
  27. Panza, G.F., 1976, Phase velocity determination of fundamental Love and Rayleigh waves, Pure and Appl.Geophys., 114:776.CrossRefGoogle Scholar
  28. Panza, G.F., Mueller St. and Calcagnile, G., 1978, The gross features of the lithosphere-asthenosphere system in the European-Mediterranean area, ESC-EGS Symposium on “Deep seismic sounding and Earthquakes” Strasbourg 29 August–5 September 1978.Google Scholar
  29. Panza, G.F., and Scalera, G., 1978, Higher Modes Dispersion Measurements, Pure and Appl. Geophys., 116:1274.CrossRefGoogle Scholar
  30. Porter, L.D., Schwab, F.A., Nakamshi, K.K., Weeks, I.F., Panza, G.F., Mantovani, E., McMenamin, D., Smythe, W.D., Liao, A.H., Landoni, J., Biswas, N.N., Chang, D.S., Bor, S.S., and Kausel, E., 1979, Relative computer speeds for surface-wave dispersion computation, Bull. Seism. Soc.Am., in press.Google Scholar
  31. Press, C.L., 1968, Earth models obtained by Monte Carlo inversion, J. Geophys. Res., 73:5223.CrossRefGoogle Scholar
  32. Scalera, G., Calcagnile, G., and Panza G.F., 1980, On the “400-km discontinuity” in the Mediterranean area, this volume.Google Scholar
  33. Valyus, V.P., 1972, Determining seismic profiles from a set of observations, in: “Computational Seismology”, V.I. Keilis-Borok, ed., Consult. Bureau, New York.Google Scholar
  34. Valyus, V.P., Keilis-Borok, V.I., and Levshin, A., 1969, Determination of the upper-mantle velocity cross-section for Europe, Proc. Acad. Sci. USSR, 185, n.3(in Russian).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Giuliano F. Panza
    • 1
  1. 1.Istituto di Geodesia e GeofisicaUniversità di BariBariItaly

Personalised recommendations