“Redox Control” of Nitrogen Fixation: An Overview

  • K. T. Shanmugam
  • S. T. Lim
  • Sherman S. M. Hom
  • D. B. Scott
  • H. Hennecke


Biological nitrogen fixation, an energy intensive process, is subject to several control processes in the cell (Brill, 1975; Ludden and Burris, 1976; Carithers and Yoch, 1979; Shanmugam and Hennecke, 1979). These include both genetic regulatory mechanisms and protein modification (in some organisms like Rhodospirilium rubrum). Addition of either NH4 + or O2 to a nitrogen-fixing culture immediately leads to repression of nitrogenase biosynthesis. In Klebsiella pneumoniae, nitrogenase synthesis is also regulated by growth temperature (Hennecke and Shanmugam, 1979). Nitrogenase is undetectable at elevated temperatures (> 37 C) under growth conditions that allow the production of nitrogenase at permissive temperatures. Although NH4 + and high temperature (39 C) repress nitrogenase biosynthesis, they have no detectable effect on preformed nitrogenase protein and catalytic activity. Ammonium ion mediated regulation of nitrogenase (NH4 +-control) is believed to be mediated through the assimilation of NH4 + to the level of organic compounds. The mechanism by which temperature affects the production of nitrogenase is unknown. These two control systems will not be discussed in this communication, with emphasis here on the role of O2 as a modulator of synthesis of nitrogenase. The term ‘redox control’ used in the title refers to the fact that molecular oxygen (and other compounds such as nitrate) have the dual role as terminal electron acceptors as well as genetic modulators of cellular activity. A lucid description of the role of O2 as a biochemical regulator is presented by Schlegel and coworkers in this volume.


Nitric Oxide Nitrogen Fixation Klebsiella Pneumoniae Terminal Electron Acceptor Rhodospirillum Rubrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brill, W. J., 1975, Regulation and genetics of bacterial nitrogen fixation, Ann. Rev. Microbiol., 29:109.CrossRefGoogle Scholar
  2. Broman, R. L., Dobrogosz, W. J., and White, D. C., 1974, Stimulation of cytochrome synthesis in Escherichia coli, Arch. Biochem. Biophys., 162:595.PubMedCrossRefGoogle Scholar
  3. Burris, R. H., 1979, Inhibition, in: “A Treatise on Dinitrogen Fixation,” R. W. F. Hardy, F. Bottomley and R. C. Burns, eds., J. Wiley and Sons, New York.Google Scholar
  4. Carithers, R. P., Yoch, D. C., and Arnon, D. I., 1979, Two forms of nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum, J. Bact., 137:779.PubMedGoogle Scholar
  5. Cole, J. A., 1976, Microbial gas metabolism, Adv. Micro. Physiol., 14:1.CrossRefGoogle Scholar
  6. Daniel, R. M., and Appleby, C. A., 1972, Anaerobic-nitrate, symbiotic and aerobic growth of Rhizobium japonicum: effect on cytochrome P-450, other haemoproteins, nitrate and nitrite reductases, Biochim. Biophys. Acta, 275:347.PubMedCrossRefGoogle Scholar
  7. Douglas, M. W., Ward, F. B., and Cole, J. A., 1974, The formate hydrogen lyase activity of cytochrome c552-deficient mutants of Escherichia coli K12, J. Gen. Micro., 80:557.Google Scholar
  8. Drozd, J., and Postgate, J. R., 1970, Effects of oxygen on acetylene reduction, cytochrome content and respiratory activity of Azotobacter chroococcum, J. Gen. Micro., 63:63.Google Scholar
  9. Eady, R. R., Smith, B. E., Cook, K. A., and Postgate, J. R., 1972, Nitrogenase of Klebsiella pneumoniae, Biochem. J., 128:655.PubMedGoogle Scholar
  10. Eady, R. R., Issack, R., Kennedy, C., Postgate, J. R., and Ratcliffe, H. D., 1978, Nitrogenase synthesis in Klebsiella pneumoniae: comparison of ammonium and oxygen regulation, J. Gen. Micro., 104:277.Google Scholar
  11. Giordano, G., Grillet, L., Rosset, R., Dou, J. H., Azoulay, E., and Haddock, B. A., 1978, Characterization of an Escherichia coli K12 mutant that is sensitive to chlorate when grown aerobically, Biochem. J., 176:553.PubMedGoogle Scholar
  12. Haddock, B. A., and Jones, C. W., 1977, Bacterial respiration, Bact. Rev., 41:47.PubMedGoogle Scholar
  13. Harrison, D. E. F., 1972, Physiological effects of dissolved oxygen tension and redox potential on growing populations of microorganisms, J. Appl. Chem. Biotech., 22:417.CrossRefGoogle Scholar
  14. Hennecke, H., and Shanmugam, K. T., 1979, Temperature control of nitrogen fixation in Klebsiella pneumoniae, Arch. Microl., 123:259.CrossRefGoogle Scholar
  15. Hill, S., and Kavanagh, E. P., 1980, Roles of nifF and nifJ gene products in electron transport to nitrogenase in Klebsiella pneumoniae, J. Bact., 141:470.PubMedGoogle Scholar
  16. Hom, S. S. M., Hennecke, H., and Shanmugam, K. T., 1980, Regulation of nitrogenase biosynthesis in Klebsiella pneumoniae: effect of nitrate, J. Gen. Micro., 117:169.Google Scholar
  17. Keister, D. L., and Ranga Rao, V., 1977, The physiology of acetylene reduction in pure cultures of rhizobia, in: “Recent Developments in Nitrogen Fixation,” W. E. Newton, J. R. Postgate and C. Rodriguez-Barrueco, eds., Academic Press, New York.Google Scholar
  18. Kretovich, V. L., Melik-Sarkisyan, S. S., and Matus, V. K., 1972, Cytochrome composition of yellow lupine nodules, Biokhimiya, 37:711.Google Scholar
  19. Kretovich, V. L., Romanov, V. I., and Korolyov, A. V., 1973, Rhi-zobium leguminosarum cytochromes (Vicia faba), Plant and Soil, 39:619.CrossRefGoogle Scholar
  20. Lester, G., and Yanofsky, C., 1961, Influence of 3-methyl anthran-ilic and anthranilic acids on the formation of tryptophan synthetase in Escherichia coli, J. Bact., 81:81.PubMedCrossRefGoogle Scholar
  21. Lim, S. T., and Shanmugam, K. T., 1979, Regulation of hydrogen utilization in Rhizobium japonicum by cyclic AMP, Biochim. Biophys. Acta, 584:479.PubMedCrossRefGoogle Scholar
  22. Lim, S. T., Hennecke, H., and Scott, D. B., 1979, Effect of cyclic guanosine 3′, 5′-monophosphate on nitrogen fixation in Rhizobium japonicum, J. Bact., 139:256.PubMedGoogle Scholar
  23. Ludden, P. W., and Burris, R. H., 1976, Activating factor for the iron protein of nitrogenase from Rhodospirilium rubrum, Science, 194:424.PubMedCrossRefGoogle Scholar
  24. Matus, V. K., Melik-Sarkisyan, S. S., and Kretovich, V. L., 1973, Cytochromes and respiration rate of bacteroids from nodules of lupine inoculated with effective and ineffective strains of Rhizobium lupini, Mikrobiologiya, 42:112.Google Scholar
  25. Morris, J. G., 1975, The physiology of obligate anaerobiosis, Adv. Micro. Physiol., 12:169.CrossRefGoogle Scholar
  26. Mortenson, L. E., 1978, Regulation of nitrogen fixation, Current Topics in Cell Reg., 13:179.Google Scholar
  27. Moyed, H. S., 1961, Interference with the feedback control of histi-dine biosynthesis, J. Biol. Chem., 236:2261.PubMedGoogle Scholar
  28. O’Brien, R. W., and Morris, J. G., 1971, Oxygen and the growth and metabolism of Clostridium acetobutylicum, J. Gen. Micro., 68:307.Google Scholar
  29. Pastan, I., and Adhya, S., 1976, Cyclic adenosine 5′-monophosphate in Escherichia coli, Bact. Rev., 40:527.PubMedGoogle Scholar
  30. Patrick, J. M., and Dobrogosz, W. J., 1973, The effect of cyclic AMP on anaerobic growth of Escherichia coli, Biochem. Biophys. Res. Commun., 54:555.PubMedCrossRefGoogle Scholar
  31. Payne, W. J., 1973, Reduction of nitrogenous oxides by microorganisms, Bact. Rev., 37:409.PubMedGoogle Scholar
  32. Pichinoty, F., 1962, Inhibition par l’oxygene de la biosynthese et de l’activite de l’hydrogenase et de l’hydrogenlyase chez les bacteries anaerobies facultatives, Biochim. Biophys. Acta, 64:111.PubMedCrossRefGoogle Scholar
  33. Roberts, G. P., MacNeil, T., MacNeil, D., and Brill, W. J., 1978, Regulation and characterization of protein products coded by the nif (nitrogen fixation) genes of Klebsiella pneumoniae, J. Bact., 136:267.PubMedGoogle Scholar
  34. Romanov, V. I., Korolev, A. V., and Kretovich, V. L., 1974, The cytochrome composition of bacteroids of Rhizobium legumino-sarum (Vicia faba), Biokhimiya, 39:719.Google Scholar
  35. Romanov, V. I., Fedulova, N. G., Korolev, A. V., and Kretovich, V. L., 1976, Effect of nitrate and nitrite on respiration and the cytochrome system of Rhizobium lupini, Mikrobiologiya, 45:85.Google Scholar
  36. Scott, D. B., Hennecke, H., and Lim, S. T., 1979, The biosynthesis of nitrogenase MoFe protein polypeptides in free-living cultures of Rhizobium japonicum, Biochim. Biophys. Acta, 565:365.PubMedGoogle Scholar
  37. Shanmugam, K. T., and Hennecke, H., 1979, Microbial genetics and nitrogen fixation, in: “Recent Advances in Biological Nitrogen Fixation,” N. S. Subba Rao, ed., Oxford International Book House, New Delhi.Google Scholar
  38. Shanmugam, K. T., and Valentine, R. C., 1975a, Microbial production of ammonium ion from nitrogen, Proc. Natl. Acad. Sci. USA, 72:136.PubMedCrossRefGoogle Scholar
  39. Shanmugam, K. T., and Valentine, R. C., 1975b, Molecular biology of nitrogen fixation, Science, 187:919.PubMedCrossRefGoogle Scholar
  40. St. John, R. T., Shah, V. K., and Brill, W. J., 1974, Regulation of nitrogenase synthesis by oxygen in Klebsiella pneumoniae, J. Bact., 119:266.PubMedGoogle Scholar
  41. Stouthamer, A. H., 1976, Biochemistry and genetics of nitrate reductase in bacteria, Adv. Micro. Physiol., 14:315.CrossRefGoogle Scholar
  42. Watt, G. D., and Bulen, W. A., 1976, Calorimetric and electrochemical studies on nitrogenase, in: “Proceedings of the 1st International Symposium on Nitrogen Fixation,” Vol. I, W. E. Newton and C. J. Nyman, eds., Washington State University Press, Pullman, Washington.Google Scholar
  43. Wimpenny, J. W. T., 1969, The effect of Eh on regulatory processes in facultative anaerobes, Biotech. Bioeng., 11:623.CrossRefGoogle Scholar
  44. Wimpenny, J. W. T., and Cole, J. A., 1967, The regulation of metabolism in facultative bacteria. III. The effect of nitrate, Biochim. Biophys. Acta, 148:233.PubMedCrossRefGoogle Scholar
  45. Wimpenny, J. W. T., and Necklen, D. K., 1971, The redox environment and microbial physiology. I. The transition from an-aerobiosis to aerobiosis in continuous cultures of facultative anaerobes, Biochim. Biophys. Acta, 253:352.PubMedCrossRefGoogle Scholar
  46. Yamamoto, I., and Ishimoto, M., 1975, Effect of nitrate reduction on the enzyme levels in carbon metabolism in Escherichia coli, J. Biochem., 78:307.PubMedGoogle Scholar
  47. Yates, M. G., 1977, Physiological aspects of nitrogen fixation, in: “Recent Development in Nitrogen Fixation,” W. Newton, J. R. Postgate, and C. Rodriguez-Barrueco, eds., Academic Press, New York.Google Scholar
  48. Yoch, D. C., 1974, Electron transport carriers involved in nitrogen fixation by the coliform, Klebsiella pneumoniae, J. Gen. Micro., 83:153.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • K. T. Shanmugam
    • 1
    • 2
  • S. T. Lim
    • 2
  • Sherman S. M. Hom
    • 2
  • D. B. Scott
    • 2
  • H. Hennecke
    • 2
  1. 1.Dept. of Microbiology and Cell ScienceUniversity of FloridaGainesvilleUSA
  2. 2.Plant Growth LaboratoryUniversity of CaliforniaDavisUSA

Personalised recommendations